This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of the modulo function I and a constant function ( GK ) results in ( GK ) itself. (Contributed by AV, 14-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | ||
| smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | ||
| smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | ||
| Assertion | smndex1igid | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐼 ∘ ( 𝐺 ‘ 𝐾 ) ) = ( 𝐺 ‘ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| 2 | smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | |
| 3 | smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | |
| 4 | smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | |
| 5 | fconstmpt | ⊢ ( ℕ0 × { 𝐾 } ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) | |
| 6 | 5 | eqcomi | ⊢ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) = ( ℕ0 × { 𝐾 } ) |
| 7 | 6 | a1i | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) = ( ℕ0 × { 𝐾 } ) ) |
| 8 | 7 | coeq2d | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐼 ∘ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) = ( 𝐼 ∘ ( ℕ0 × { 𝐾 } ) ) ) |
| 9 | simpl | ⊢ ( ( 𝑛 = 𝐾 ∧ 𝑥 ∈ ℕ0 ) → 𝑛 = 𝐾 ) | |
| 10 | 9 | mpteq2dva | ⊢ ( 𝑛 = 𝐾 → ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
| 11 | nn0ex | ⊢ ℕ0 ∈ V | |
| 12 | 11 | mptex | ⊢ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ∈ V |
| 13 | 10 4 12 | fvmpt | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
| 14 | 13 | coeq2d | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐼 ∘ ( 𝐺 ‘ 𝐾 ) ) = ( 𝐼 ∘ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) ) |
| 15 | oveq1 | ⊢ ( 𝑥 = 𝐾 → ( 𝑥 mod 𝑁 ) = ( 𝐾 mod 𝑁 ) ) | |
| 16 | zmodidfzoimp | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐾 mod 𝑁 ) = 𝐾 ) | |
| 17 | 15 16 | sylan9eqr | ⊢ ( ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 = 𝐾 ) → ( 𝑥 mod 𝑁 ) = 𝐾 ) |
| 18 | elfzonn0 | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐾 ∈ ℕ0 ) | |
| 19 | 3 17 18 18 | fvmptd2 | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐼 ‘ 𝐾 ) = 𝐾 ) |
| 20 | 19 | eqcomd | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐾 = ( 𝐼 ‘ 𝐾 ) ) |
| 21 | 20 | sneqd | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → { 𝐾 } = { ( 𝐼 ‘ 𝐾 ) } ) |
| 22 | 21 | xpeq2d | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( ℕ0 × { 𝐾 } ) = ( ℕ0 × { ( 𝐼 ‘ 𝐾 ) } ) ) |
| 23 | 13 6 | eqtrdi | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) = ( ℕ0 × { 𝐾 } ) ) |
| 24 | ovex | ⊢ ( 𝑥 mod 𝑁 ) ∈ V | |
| 25 | 24 3 | fnmpti | ⊢ 𝐼 Fn ℕ0 |
| 26 | fcoconst | ⊢ ( ( 𝐼 Fn ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝐼 ∘ ( ℕ0 × { 𝐾 } ) ) = ( ℕ0 × { ( 𝐼 ‘ 𝐾 ) } ) ) | |
| 27 | 25 18 26 | sylancr | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐼 ∘ ( ℕ0 × { 𝐾 } ) ) = ( ℕ0 × { ( 𝐼 ‘ 𝐾 ) } ) ) |
| 28 | 22 23 27 | 3eqtr4d | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) = ( 𝐼 ∘ ( ℕ0 × { 𝐾 } ) ) ) |
| 29 | 8 14 28 | 3eqtr4d | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐼 ∘ ( 𝐺 ‘ 𝐾 ) ) = ( 𝐺 ‘ 𝐾 ) ) |