This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of a value of the satisfaction predicate as function over wff codes in the empty model and the empty binary relation expressed as ordered pair. (Contributed by AV, 19-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | satf0op.s | ⊢ 𝑆 = ( ∅ Sat ∅ ) | |
| Assertion | satf0op | ⊢ ( 𝑁 ∈ ω → ( 𝑋 ∈ ( 𝑆 ‘ 𝑁 ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑁 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satf0op.s | ⊢ 𝑆 = ( ∅ Sat ∅ ) | |
| 2 | fveq2 | ⊢ ( 𝑦 = ∅ → ( 𝑆 ‘ 𝑦 ) = ( 𝑆 ‘ ∅ ) ) | |
| 3 | 2 | eleq2d | ⊢ ( 𝑦 = ∅ → ( 𝑋 ∈ ( 𝑆 ‘ 𝑦 ) ↔ 𝑋 ∈ ( 𝑆 ‘ ∅ ) ) ) |
| 4 | 2 | eleq2d | ⊢ ( 𝑦 = ∅ → ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑦 ) ↔ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ ∅ ) ) ) |
| 5 | 4 | anbi2d | ⊢ ( 𝑦 = ∅ → ( ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑦 ) ) ↔ ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ ∅ ) ) ) ) |
| 6 | 5 | exbidv | ⊢ ( 𝑦 = ∅ → ( ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑦 ) ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ ∅ ) ) ) ) |
| 7 | 3 6 | bibi12d | ⊢ ( 𝑦 = ∅ → ( ( 𝑋 ∈ ( 𝑆 ‘ 𝑦 ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑦 ) ) ) ↔ ( 𝑋 ∈ ( 𝑆 ‘ ∅ ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ ∅ ) ) ) ) ) |
| 8 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑆 ‘ 𝑦 ) = ( 𝑆 ‘ 𝑧 ) ) | |
| 9 | 8 | eleq2d | ⊢ ( 𝑦 = 𝑧 → ( 𝑋 ∈ ( 𝑆 ‘ 𝑦 ) ↔ 𝑋 ∈ ( 𝑆 ‘ 𝑧 ) ) ) |
| 10 | 8 | eleq2d | ⊢ ( 𝑦 = 𝑧 → ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑦 ) ↔ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ) ) |
| 11 | 10 | anbi2d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑦 ) ) ↔ ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ) ) ) |
| 12 | 11 | exbidv | ⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑦 ) ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ) ) ) |
| 13 | 9 12 | bibi12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑋 ∈ ( 𝑆 ‘ 𝑦 ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑦 ) ) ) ↔ ( 𝑋 ∈ ( 𝑆 ‘ 𝑧 ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ) ) ) ) |
| 14 | fveq2 | ⊢ ( 𝑦 = suc 𝑧 → ( 𝑆 ‘ 𝑦 ) = ( 𝑆 ‘ suc 𝑧 ) ) | |
| 15 | 14 | eleq2d | ⊢ ( 𝑦 = suc 𝑧 → ( 𝑋 ∈ ( 𝑆 ‘ 𝑦 ) ↔ 𝑋 ∈ ( 𝑆 ‘ suc 𝑧 ) ) ) |
| 16 | 14 | eleq2d | ⊢ ( 𝑦 = suc 𝑧 → ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑦 ) ↔ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ suc 𝑧 ) ) ) |
| 17 | 16 | anbi2d | ⊢ ( 𝑦 = suc 𝑧 → ( ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑦 ) ) ↔ ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ suc 𝑧 ) ) ) ) |
| 18 | 17 | exbidv | ⊢ ( 𝑦 = suc 𝑧 → ( ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑦 ) ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ suc 𝑧 ) ) ) ) |
| 19 | 15 18 | bibi12d | ⊢ ( 𝑦 = suc 𝑧 → ( ( 𝑋 ∈ ( 𝑆 ‘ 𝑦 ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑦 ) ) ) ↔ ( 𝑋 ∈ ( 𝑆 ‘ suc 𝑧 ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ suc 𝑧 ) ) ) ) ) |
| 20 | fveq2 | ⊢ ( 𝑦 = 𝑁 → ( 𝑆 ‘ 𝑦 ) = ( 𝑆 ‘ 𝑁 ) ) | |
| 21 | 20 | eleq2d | ⊢ ( 𝑦 = 𝑁 → ( 𝑋 ∈ ( 𝑆 ‘ 𝑦 ) ↔ 𝑋 ∈ ( 𝑆 ‘ 𝑁 ) ) ) |
| 22 | 20 | eleq2d | ⊢ ( 𝑦 = 𝑁 → ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑦 ) ↔ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑁 ) ) ) |
| 23 | 22 | anbi2d | ⊢ ( 𝑦 = 𝑁 → ( ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑦 ) ) ↔ ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑁 ) ) ) ) |
| 24 | 23 | exbidv | ⊢ ( 𝑦 = 𝑁 → ( ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑦 ) ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑁 ) ) ) ) |
| 25 | 21 24 | bibi12d | ⊢ ( 𝑦 = 𝑁 → ( ( 𝑋 ∈ ( 𝑆 ‘ 𝑦 ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑦 ) ) ) ↔ ( 𝑋 ∈ ( 𝑆 ‘ 𝑁 ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑁 ) ) ) ) ) |
| 26 | 1 | fveq1i | ⊢ ( 𝑆 ‘ ∅ ) = ( ( ∅ Sat ∅ ) ‘ ∅ ) |
| 27 | satf00 | ⊢ ( ( ∅ Sat ∅ ) ‘ ∅ ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } | |
| 28 | 26 27 | eqtri | ⊢ ( 𝑆 ‘ ∅ ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } |
| 29 | 28 | eleq2i | ⊢ ( 𝑋 ∈ ( 𝑆 ‘ ∅ ) ↔ 𝑋 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) |
| 30 | elopab | ⊢ ( 𝑋 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑋 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) ) | |
| 31 | opeq2 | ⊢ ( 𝑦 = ∅ → 〈 𝑥 , 𝑦 〉 = 〈 𝑥 , ∅ 〉 ) | |
| 32 | 31 | adantr | ⊢ ( ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑥 , ∅ 〉 ) |
| 33 | 32 | eqeq2d | ⊢ ( ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) → ( 𝑋 = 〈 𝑥 , 𝑦 〉 ↔ 𝑋 = 〈 𝑥 , ∅ 〉 ) ) |
| 34 | 33 | biimpd | ⊢ ( ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) → ( 𝑋 = 〈 𝑥 , 𝑦 〉 → 𝑋 = 〈 𝑥 , ∅ 〉 ) ) |
| 35 | 34 | impcom | ⊢ ( ( 𝑋 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) → 𝑋 = 〈 𝑥 , ∅ 〉 ) |
| 36 | eqidd | ⊢ ( 𝑦 = ∅ → ∅ = ∅ ) | |
| 37 | 36 | anim1i | ⊢ ( ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) → ( ∅ = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 38 | 37 | adantl | ⊢ ( ( 𝑋 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) → ( ∅ = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 39 | satf00 | ⊢ ( ( ∅ Sat ∅ ) ‘ ∅ ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) ) } | |
| 40 | 26 39 | eqtri | ⊢ ( 𝑆 ‘ ∅ ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) ) } |
| 41 | 40 | eleq2i | ⊢ ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ ∅ ) ↔ 〈 𝑥 , ∅ 〉 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) |
| 42 | vex | ⊢ 𝑥 ∈ V | |
| 43 | 0ex | ⊢ ∅ ∈ V | |
| 44 | eqeq1 | ⊢ ( 𝑧 = ∅ → ( 𝑧 = ∅ ↔ ∅ = ∅ ) ) | |
| 45 | eqeq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) ↔ 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) | |
| 46 | 45 | 2rexbidv | ⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 47 | 44 46 | bi2anan9r | ⊢ ( ( 𝑦 = 𝑥 ∧ 𝑧 = ∅ ) → ( ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) ) ↔ ( ∅ = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) ) |
| 48 | 42 43 47 | opelopaba | ⊢ ( 〈 𝑥 , ∅ 〉 ∈ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑧 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑦 = ( 𝑖 ∈𝑔 𝑗 ) ) } ↔ ( ∅ = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 49 | 41 48 | bitri | ⊢ ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ ∅ ) ↔ ( ∅ = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 50 | 38 49 | sylibr | ⊢ ( ( 𝑋 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) → 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ ∅ ) ) |
| 51 | 35 50 | jca | ⊢ ( ( 𝑋 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) → ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ ∅ ) ) ) |
| 52 | 51 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑋 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) → ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ ∅ ) ) ) |
| 53 | 31 | eqeq2d | ⊢ ( 𝑦 = ∅ → ( 𝑋 = 〈 𝑥 , 𝑦 〉 ↔ 𝑋 = 〈 𝑥 , ∅ 〉 ) ) |
| 54 | eqeq1 | ⊢ ( 𝑦 = ∅ → ( 𝑦 = ∅ ↔ ∅ = ∅ ) ) | |
| 55 | 54 | anbi1d | ⊢ ( 𝑦 = ∅ → ( ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ↔ ( ∅ = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) ) |
| 56 | 53 55 | anbi12d | ⊢ ( 𝑦 = ∅ → ( ( 𝑋 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) ↔ ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) ) ) |
| 57 | 43 56 | spcev | ⊢ ( ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) → ∃ 𝑦 ( 𝑋 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) ) |
| 58 | 49 57 | sylan2b | ⊢ ( ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ ∅ ) ) → ∃ 𝑦 ( 𝑋 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) ) |
| 59 | 52 58 | impbii | ⊢ ( ∃ 𝑦 ( 𝑋 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) ↔ ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ ∅ ) ) ) |
| 60 | 59 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑋 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ ∅ ) ) ) |
| 61 | 29 30 60 | 3bitri | ⊢ ( 𝑋 ∈ ( 𝑆 ‘ ∅ ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ ∅ ) ) ) |
| 62 | 1 | satf0suc | ⊢ ( 𝑧 ∈ ω → ( 𝑆 ‘ suc 𝑧 ) = ( ( 𝑆 ‘ 𝑧 ) ∪ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) |
| 63 | 62 | eleq2d | ⊢ ( 𝑧 ∈ ω → ( 𝑋 ∈ ( 𝑆 ‘ suc 𝑧 ) ↔ 𝑋 ∈ ( ( 𝑆 ‘ 𝑧 ) ∪ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) ) |
| 64 | elun | ⊢ ( 𝑋 ∈ ( ( 𝑆 ‘ 𝑧 ) ∪ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ↔ ( 𝑋 ∈ ( 𝑆 ‘ 𝑧 ) ∨ 𝑋 ∈ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) | |
| 65 | 64 | a1i | ⊢ ( 𝑧 ∈ ω → ( 𝑋 ∈ ( ( 𝑆 ‘ 𝑧 ) ∪ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ↔ ( 𝑋 ∈ ( 𝑆 ‘ 𝑧 ) ∨ 𝑋 ∈ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) ) |
| 66 | elopab | ⊢ ( 𝑋 ∈ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑋 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) | |
| 67 | 66 | a1i | ⊢ ( 𝑧 ∈ ω → ( 𝑋 ∈ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑋 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ) |
| 68 | 67 | orbi2d | ⊢ ( 𝑧 ∈ ω → ( ( 𝑋 ∈ ( 𝑆 ‘ 𝑧 ) ∨ 𝑋 ∈ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ↔ ( 𝑋 ∈ ( 𝑆 ‘ 𝑧 ) ∨ ∃ 𝑎 ∃ 𝑏 ( 𝑋 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ) ) |
| 69 | 63 65 68 | 3bitrd | ⊢ ( 𝑧 ∈ ω → ( 𝑋 ∈ ( 𝑆 ‘ suc 𝑧 ) ↔ ( 𝑋 ∈ ( 𝑆 ‘ 𝑧 ) ∨ ∃ 𝑎 ∃ 𝑏 ( 𝑋 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ) ) |
| 70 | 69 | adantr | ⊢ ( ( 𝑧 ∈ ω ∧ ( 𝑋 ∈ ( 𝑆 ‘ 𝑧 ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ) ) ) → ( 𝑋 ∈ ( 𝑆 ‘ suc 𝑧 ) ↔ ( 𝑋 ∈ ( 𝑆 ‘ 𝑧 ) ∨ ∃ 𝑎 ∃ 𝑏 ( 𝑋 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ) ) |
| 71 | simpr | ⊢ ( ( 𝑧 ∈ ω ∧ ( 𝑋 ∈ ( 𝑆 ‘ 𝑧 ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ) ) ) → ( 𝑋 ∈ ( 𝑆 ‘ 𝑧 ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ) ) ) | |
| 72 | opeq2 | ⊢ ( 𝑏 = ∅ → 〈 𝑎 , 𝑏 〉 = 〈 𝑎 , ∅ 〉 ) | |
| 73 | 72 | eqeq2d | ⊢ ( 𝑏 = ∅ → ( 𝑋 = 〈 𝑎 , 𝑏 〉 ↔ 𝑋 = 〈 𝑎 , ∅ 〉 ) ) |
| 74 | 73 | biimpd | ⊢ ( 𝑏 = ∅ → ( 𝑋 = 〈 𝑎 , 𝑏 〉 → 𝑋 = 〈 𝑎 , ∅ 〉 ) ) |
| 75 | 74 | adantr | ⊢ ( ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) → ( 𝑋 = 〈 𝑎 , 𝑏 〉 → 𝑋 = 〈 𝑎 , ∅ 〉 ) ) |
| 76 | 75 | impcom | ⊢ ( ( 𝑋 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) → 𝑋 = 〈 𝑎 , ∅ 〉 ) |
| 77 | eqidd | ⊢ ( ( 𝑋 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) → ∅ = ∅ ) | |
| 78 | simpr | ⊢ ( ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) → ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) | |
| 79 | 78 | adantl | ⊢ ( ( 𝑋 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) → ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) |
| 80 | 77 79 | jca | ⊢ ( ( 𝑋 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) → ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) |
| 81 | 76 80 | jca | ⊢ ( ( 𝑋 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) → ( 𝑋 = 〈 𝑎 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) |
| 82 | 81 | exlimiv | ⊢ ( ∃ 𝑏 ( 𝑋 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) → ( 𝑋 = 〈 𝑎 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) |
| 83 | eqeq1 | ⊢ ( 𝑏 = ∅ → ( 𝑏 = ∅ ↔ ∅ = ∅ ) ) | |
| 84 | 83 | anbi1d | ⊢ ( 𝑏 = ∅ → ( ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ↔ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) |
| 85 | 73 84 | anbi12d | ⊢ ( 𝑏 = ∅ → ( ( 𝑋 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ↔ ( 𝑋 = 〈 𝑎 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ) |
| 86 | 43 85 | spcev | ⊢ ( ( 𝑋 = 〈 𝑎 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) → ∃ 𝑏 ( 𝑋 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) |
| 87 | 82 86 | impbii | ⊢ ( ∃ 𝑏 ( 𝑋 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ↔ ( 𝑋 = 〈 𝑎 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) |
| 88 | 87 | exbii | ⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑋 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ↔ ∃ 𝑎 ( 𝑋 = 〈 𝑎 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) |
| 89 | 88 | a1i | ⊢ ( 𝑧 ∈ ω → ( ∃ 𝑎 ∃ 𝑏 ( 𝑋 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ↔ ∃ 𝑎 ( 𝑋 = 〈 𝑎 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ) |
| 90 | opeq1 | ⊢ ( 𝑥 = 𝑎 → 〈 𝑥 , ∅ 〉 = 〈 𝑎 , ∅ 〉 ) | |
| 91 | 90 | eqeq2d | ⊢ ( 𝑥 = 𝑎 → ( 𝑋 = 〈 𝑥 , ∅ 〉 ↔ 𝑋 = 〈 𝑎 , ∅ 〉 ) ) |
| 92 | eqeq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ↔ 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) | |
| 93 | 92 | rexbidv | ⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ↔ ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 94 | eqeq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ↔ 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) | |
| 95 | 94 | rexbidv | ⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ↔ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) |
| 96 | 93 95 | orbi12d | ⊢ ( 𝑥 = 𝑎 → ( ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ↔ ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) |
| 97 | 96 | rexbidv | ⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ↔ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) |
| 98 | 97 | anbi2d | ⊢ ( 𝑥 = 𝑎 → ( ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ↔ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) |
| 99 | 91 98 | anbi12d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ↔ ( 𝑋 = 〈 𝑎 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ) |
| 100 | 99 | cbvexvw | ⊢ ( ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ↔ ∃ 𝑎 ( 𝑋 = 〈 𝑎 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) |
| 101 | 89 100 | bitr4di | ⊢ ( 𝑧 ∈ ω → ( ∃ 𝑎 ∃ 𝑏 ( 𝑋 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ) |
| 102 | 101 | adantr | ⊢ ( ( 𝑧 ∈ ω ∧ ( 𝑋 ∈ ( 𝑆 ‘ 𝑧 ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ) ) ) → ( ∃ 𝑎 ∃ 𝑏 ( 𝑋 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ) |
| 103 | 71 102 | orbi12d | ⊢ ( ( 𝑧 ∈ ω ∧ ( 𝑋 ∈ ( 𝑆 ‘ 𝑧 ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ) ) ) → ( ( 𝑋 ∈ ( 𝑆 ‘ 𝑧 ) ∨ ∃ 𝑎 ∃ 𝑏 ( 𝑋 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ↔ ( ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ) ∨ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ) ) |
| 104 | 19.43 | ⊢ ( ∃ 𝑥 ( ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ) ∨ ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ↔ ( ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ) ∨ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ) | |
| 105 | andi | ⊢ ( ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ∨ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ↔ ( ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ) ∨ ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ) | |
| 106 | 105 | bicomi | ⊢ ( ( ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ) ∨ ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ↔ ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ∨ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ) |
| 107 | 106 | exbii | ⊢ ( ∃ 𝑥 ( ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ) ∨ ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ∨ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ) |
| 108 | 104 107 | bitr3i | ⊢ ( ( ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ) ∨ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ∨ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ) |
| 109 | 103 108 | bitrdi | ⊢ ( ( 𝑧 ∈ ω ∧ ( 𝑋 ∈ ( 𝑆 ‘ 𝑧 ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ) ) ) → ( ( 𝑋 ∈ ( 𝑆 ‘ 𝑧 ) ∨ ∃ 𝑎 ∃ 𝑏 ( 𝑋 = 〈 𝑎 , 𝑏 〉 ∧ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ∨ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ) ) |
| 110 | 62 | eleq2d | ⊢ ( 𝑧 ∈ ω → ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ suc 𝑧 ) ↔ 〈 𝑥 , ∅ 〉 ∈ ( ( 𝑆 ‘ 𝑧 ) ∪ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) ) |
| 111 | elun | ⊢ ( 〈 𝑥 , ∅ 〉 ∈ ( ( 𝑆 ‘ 𝑧 ) ∪ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ↔ ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ∨ 〈 𝑥 , ∅ 〉 ∈ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) | |
| 112 | eqeq1 | ⊢ ( 𝑎 = 𝑥 → ( 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ↔ 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) | |
| 113 | 112 | rexbidv | ⊢ ( 𝑎 = 𝑥 → ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ↔ ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) |
| 114 | eqeq1 | ⊢ ( 𝑎 = 𝑥 → ( 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ↔ 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) | |
| 115 | 114 | rexbidv | ⊢ ( 𝑎 = 𝑥 → ( ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ↔ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) |
| 116 | 113 115 | orbi12d | ⊢ ( 𝑎 = 𝑥 → ( ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ↔ ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) |
| 117 | 116 | rexbidv | ⊢ ( 𝑎 = 𝑥 → ( ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ↔ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) |
| 118 | 83 117 | bi2anan9r | ⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = ∅ ) → ( ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ↔ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) |
| 119 | 42 43 118 | opelopaba | ⊢ ( 〈 𝑥 , ∅ 〉 ∈ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ↔ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) |
| 120 | 119 | orbi2i | ⊢ ( ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ∨ 〈 𝑥 , ∅ 〉 ∈ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ↔ ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ∨ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) |
| 121 | 111 120 | bitri | ⊢ ( 〈 𝑥 , ∅ 〉 ∈ ( ( 𝑆 ‘ 𝑧 ) ∪ { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑏 = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑎 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑎 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ↔ ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ∨ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) |
| 122 | 110 121 | bitrdi | ⊢ ( 𝑧 ∈ ω → ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ suc 𝑧 ) ↔ ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ∨ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ) |
| 123 | 122 | anbi2d | ⊢ ( 𝑧 ∈ ω → ( ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ suc 𝑧 ) ) ↔ ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ∨ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ) ) |
| 124 | 123 | exbidv | ⊢ ( 𝑧 ∈ ω → ( ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ suc 𝑧 ) ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ∨ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ) ) |
| 125 | 124 | bicomd | ⊢ ( 𝑧 ∈ ω → ( ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ∨ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ suc 𝑧 ) ) ) ) |
| 126 | 125 | adantr | ⊢ ( ( 𝑧 ∈ ω ∧ ( 𝑋 ∈ ( 𝑆 ‘ 𝑧 ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ) ) ) → ( ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ ( 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ∨ ( ∅ = ∅ ∧ ∃ 𝑢 ∈ ( 𝑆 ‘ 𝑧 ) ( ∃ 𝑣 ∈ ( 𝑆 ‘ 𝑧 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ suc 𝑧 ) ) ) ) |
| 127 | 70 109 126 | 3bitrd | ⊢ ( ( 𝑧 ∈ ω ∧ ( 𝑋 ∈ ( 𝑆 ‘ 𝑧 ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ) ) ) → ( 𝑋 ∈ ( 𝑆 ‘ suc 𝑧 ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ suc 𝑧 ) ) ) ) |
| 128 | 127 | ex | ⊢ ( 𝑧 ∈ ω → ( ( 𝑋 ∈ ( 𝑆 ‘ 𝑧 ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑧 ) ) ) → ( 𝑋 ∈ ( 𝑆 ‘ suc 𝑧 ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ suc 𝑧 ) ) ) ) ) |
| 129 | 7 13 19 25 61 128 | finds | ⊢ ( 𝑁 ∈ ω → ( 𝑋 ∈ ( 𝑆 ‘ 𝑁 ) ↔ ∃ 𝑥 ( 𝑋 = 〈 𝑥 , ∅ 〉 ∧ 〈 𝑥 , ∅ 〉 ∈ ( 𝑆 ‘ 𝑁 ) ) ) ) |