This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of a value of the satisfaction predicate as function over wff codes in the empty model and the empty binary relation expressed as ordered pair. (Contributed by AV, 19-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | satf0op.s | |- S = ( (/) Sat (/) ) |
|
| Assertion | satf0op | |- ( N e. _om -> ( X e. ( S ` N ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` N ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satf0op.s | |- S = ( (/) Sat (/) ) |
|
| 2 | fveq2 | |- ( y = (/) -> ( S ` y ) = ( S ` (/) ) ) |
|
| 3 | 2 | eleq2d | |- ( y = (/) -> ( X e. ( S ` y ) <-> X e. ( S ` (/) ) ) ) |
| 4 | 2 | eleq2d | |- ( y = (/) -> ( <. x , (/) >. e. ( S ` y ) <-> <. x , (/) >. e. ( S ` (/) ) ) ) |
| 5 | 4 | anbi2d | |- ( y = (/) -> ( ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` y ) ) <-> ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` (/) ) ) ) ) |
| 6 | 5 | exbidv | |- ( y = (/) -> ( E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` y ) ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` (/) ) ) ) ) |
| 7 | 3 6 | bibi12d | |- ( y = (/) -> ( ( X e. ( S ` y ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` y ) ) ) <-> ( X e. ( S ` (/) ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` (/) ) ) ) ) ) |
| 8 | fveq2 | |- ( y = z -> ( S ` y ) = ( S ` z ) ) |
|
| 9 | 8 | eleq2d | |- ( y = z -> ( X e. ( S ` y ) <-> X e. ( S ` z ) ) ) |
| 10 | 8 | eleq2d | |- ( y = z -> ( <. x , (/) >. e. ( S ` y ) <-> <. x , (/) >. e. ( S ` z ) ) ) |
| 11 | 10 | anbi2d | |- ( y = z -> ( ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` y ) ) <-> ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` z ) ) ) ) |
| 12 | 11 | exbidv | |- ( y = z -> ( E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` y ) ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` z ) ) ) ) |
| 13 | 9 12 | bibi12d | |- ( y = z -> ( ( X e. ( S ` y ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` y ) ) ) <-> ( X e. ( S ` z ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` z ) ) ) ) ) |
| 14 | fveq2 | |- ( y = suc z -> ( S ` y ) = ( S ` suc z ) ) |
|
| 15 | 14 | eleq2d | |- ( y = suc z -> ( X e. ( S ` y ) <-> X e. ( S ` suc z ) ) ) |
| 16 | 14 | eleq2d | |- ( y = suc z -> ( <. x , (/) >. e. ( S ` y ) <-> <. x , (/) >. e. ( S ` suc z ) ) ) |
| 17 | 16 | anbi2d | |- ( y = suc z -> ( ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` y ) ) <-> ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` suc z ) ) ) ) |
| 18 | 17 | exbidv | |- ( y = suc z -> ( E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` y ) ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` suc z ) ) ) ) |
| 19 | 15 18 | bibi12d | |- ( y = suc z -> ( ( X e. ( S ` y ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` y ) ) ) <-> ( X e. ( S ` suc z ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` suc z ) ) ) ) ) |
| 20 | fveq2 | |- ( y = N -> ( S ` y ) = ( S ` N ) ) |
|
| 21 | 20 | eleq2d | |- ( y = N -> ( X e. ( S ` y ) <-> X e. ( S ` N ) ) ) |
| 22 | 20 | eleq2d | |- ( y = N -> ( <. x , (/) >. e. ( S ` y ) <-> <. x , (/) >. e. ( S ` N ) ) ) |
| 23 | 22 | anbi2d | |- ( y = N -> ( ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` y ) ) <-> ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` N ) ) ) ) |
| 24 | 23 | exbidv | |- ( y = N -> ( E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` y ) ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` N ) ) ) ) |
| 25 | 21 24 | bibi12d | |- ( y = N -> ( ( X e. ( S ` y ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` y ) ) ) <-> ( X e. ( S ` N ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` N ) ) ) ) ) |
| 26 | 1 | fveq1i | |- ( S ` (/) ) = ( ( (/) Sat (/) ) ` (/) ) |
| 27 | satf00 | |- ( ( (/) Sat (/) ) ` (/) ) = { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } |
|
| 28 | 26 27 | eqtri | |- ( S ` (/) ) = { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } |
| 29 | 28 | eleq2i | |- ( X e. ( S ` (/) ) <-> X e. { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) |
| 30 | elopab | |- ( X e. { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } <-> E. x E. y ( X = <. x , y >. /\ ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) ) |
|
| 31 | opeq2 | |- ( y = (/) -> <. x , y >. = <. x , (/) >. ) |
|
| 32 | 31 | adantr | |- ( ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) -> <. x , y >. = <. x , (/) >. ) |
| 33 | 32 | eqeq2d | |- ( ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) -> ( X = <. x , y >. <-> X = <. x , (/) >. ) ) |
| 34 | 33 | biimpd | |- ( ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) -> ( X = <. x , y >. -> X = <. x , (/) >. ) ) |
| 35 | 34 | impcom | |- ( ( X = <. x , y >. /\ ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) -> X = <. x , (/) >. ) |
| 36 | eqidd | |- ( y = (/) -> (/) = (/) ) |
|
| 37 | 36 | anim1i | |- ( ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) -> ( (/) = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) |
| 38 | 37 | adantl | |- ( ( X = <. x , y >. /\ ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) -> ( (/) = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) |
| 39 | satf00 | |- ( ( (/) Sat (/) ) ` (/) ) = { <. y , z >. | ( z = (/) /\ E. i e. _om E. j e. _om y = ( i e.g j ) ) } |
|
| 40 | 26 39 | eqtri | |- ( S ` (/) ) = { <. y , z >. | ( z = (/) /\ E. i e. _om E. j e. _om y = ( i e.g j ) ) } |
| 41 | 40 | eleq2i | |- ( <. x , (/) >. e. ( S ` (/) ) <-> <. x , (/) >. e. { <. y , z >. | ( z = (/) /\ E. i e. _om E. j e. _om y = ( i e.g j ) ) } ) |
| 42 | vex | |- x e. _V |
|
| 43 | 0ex | |- (/) e. _V |
|
| 44 | eqeq1 | |- ( z = (/) -> ( z = (/) <-> (/) = (/) ) ) |
|
| 45 | eqeq1 | |- ( y = x -> ( y = ( i e.g j ) <-> x = ( i e.g j ) ) ) |
|
| 46 | 45 | 2rexbidv | |- ( y = x -> ( E. i e. _om E. j e. _om y = ( i e.g j ) <-> E. i e. _om E. j e. _om x = ( i e.g j ) ) ) |
| 47 | 44 46 | bi2anan9r | |- ( ( y = x /\ z = (/) ) -> ( ( z = (/) /\ E. i e. _om E. j e. _om y = ( i e.g j ) ) <-> ( (/) = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) ) |
| 48 | 42 43 47 | opelopaba | |- ( <. x , (/) >. e. { <. y , z >. | ( z = (/) /\ E. i e. _om E. j e. _om y = ( i e.g j ) ) } <-> ( (/) = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) |
| 49 | 41 48 | bitri | |- ( <. x , (/) >. e. ( S ` (/) ) <-> ( (/) = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) |
| 50 | 38 49 | sylibr | |- ( ( X = <. x , y >. /\ ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) -> <. x , (/) >. e. ( S ` (/) ) ) |
| 51 | 35 50 | jca | |- ( ( X = <. x , y >. /\ ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) -> ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` (/) ) ) ) |
| 52 | 51 | exlimiv | |- ( E. y ( X = <. x , y >. /\ ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) -> ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` (/) ) ) ) |
| 53 | 31 | eqeq2d | |- ( y = (/) -> ( X = <. x , y >. <-> X = <. x , (/) >. ) ) |
| 54 | eqeq1 | |- ( y = (/) -> ( y = (/) <-> (/) = (/) ) ) |
|
| 55 | 54 | anbi1d | |- ( y = (/) -> ( ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) <-> ( (/) = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) ) |
| 56 | 53 55 | anbi12d | |- ( y = (/) -> ( ( X = <. x , y >. /\ ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) <-> ( X = <. x , (/) >. /\ ( (/) = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) ) ) |
| 57 | 43 56 | spcev | |- ( ( X = <. x , (/) >. /\ ( (/) = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) -> E. y ( X = <. x , y >. /\ ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) ) |
| 58 | 49 57 | sylan2b | |- ( ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` (/) ) ) -> E. y ( X = <. x , y >. /\ ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) ) |
| 59 | 52 58 | impbii | |- ( E. y ( X = <. x , y >. /\ ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) <-> ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` (/) ) ) ) |
| 60 | 59 | exbii | |- ( E. x E. y ( X = <. x , y >. /\ ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` (/) ) ) ) |
| 61 | 29 30 60 | 3bitri | |- ( X e. ( S ` (/) ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` (/) ) ) ) |
| 62 | 1 | satf0suc | |- ( z e. _om -> ( S ` suc z ) = ( ( S ` z ) u. { <. a , b >. | ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) } ) ) |
| 63 | 62 | eleq2d | |- ( z e. _om -> ( X e. ( S ` suc z ) <-> X e. ( ( S ` z ) u. { <. a , b >. | ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) } ) ) ) |
| 64 | elun | |- ( X e. ( ( S ` z ) u. { <. a , b >. | ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) } ) <-> ( X e. ( S ` z ) \/ X e. { <. a , b >. | ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) } ) ) |
|
| 65 | 64 | a1i | |- ( z e. _om -> ( X e. ( ( S ` z ) u. { <. a , b >. | ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) } ) <-> ( X e. ( S ` z ) \/ X e. { <. a , b >. | ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) } ) ) ) |
| 66 | elopab | |- ( X e. { <. a , b >. | ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) } <-> E. a E. b ( X = <. a , b >. /\ ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) ) |
|
| 67 | 66 | a1i | |- ( z e. _om -> ( X e. { <. a , b >. | ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) } <-> E. a E. b ( X = <. a , b >. /\ ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) ) ) |
| 68 | 67 | orbi2d | |- ( z e. _om -> ( ( X e. ( S ` z ) \/ X e. { <. a , b >. | ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) } ) <-> ( X e. ( S ` z ) \/ E. a E. b ( X = <. a , b >. /\ ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) ) ) ) |
| 69 | 63 65 68 | 3bitrd | |- ( z e. _om -> ( X e. ( S ` suc z ) <-> ( X e. ( S ` z ) \/ E. a E. b ( X = <. a , b >. /\ ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) ) ) ) |
| 70 | 69 | adantr | |- ( ( z e. _om /\ ( X e. ( S ` z ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` z ) ) ) ) -> ( X e. ( S ` suc z ) <-> ( X e. ( S ` z ) \/ E. a E. b ( X = <. a , b >. /\ ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) ) ) ) |
| 71 | simpr | |- ( ( z e. _om /\ ( X e. ( S ` z ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` z ) ) ) ) -> ( X e. ( S ` z ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` z ) ) ) ) |
|
| 72 | opeq2 | |- ( b = (/) -> <. a , b >. = <. a , (/) >. ) |
|
| 73 | 72 | eqeq2d | |- ( b = (/) -> ( X = <. a , b >. <-> X = <. a , (/) >. ) ) |
| 74 | 73 | biimpd | |- ( b = (/) -> ( X = <. a , b >. -> X = <. a , (/) >. ) ) |
| 75 | 74 | adantr | |- ( ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) -> ( X = <. a , b >. -> X = <. a , (/) >. ) ) |
| 76 | 75 | impcom | |- ( ( X = <. a , b >. /\ ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) -> X = <. a , (/) >. ) |
| 77 | eqidd | |- ( ( X = <. a , b >. /\ ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) -> (/) = (/) ) |
|
| 78 | simpr | |- ( ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) -> E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) |
|
| 79 | 78 | adantl | |- ( ( X = <. a , b >. /\ ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) -> E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) |
| 80 | 77 79 | jca | |- ( ( X = <. a , b >. /\ ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) -> ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) |
| 81 | 76 80 | jca | |- ( ( X = <. a , b >. /\ ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) -> ( X = <. a , (/) >. /\ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) ) |
| 82 | 81 | exlimiv | |- ( E. b ( X = <. a , b >. /\ ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) -> ( X = <. a , (/) >. /\ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) ) |
| 83 | eqeq1 | |- ( b = (/) -> ( b = (/) <-> (/) = (/) ) ) |
|
| 84 | 83 | anbi1d | |- ( b = (/) -> ( ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) <-> ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) ) |
| 85 | 73 84 | anbi12d | |- ( b = (/) -> ( ( X = <. a , b >. /\ ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) <-> ( X = <. a , (/) >. /\ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) ) ) |
| 86 | 43 85 | spcev | |- ( ( X = <. a , (/) >. /\ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) -> E. b ( X = <. a , b >. /\ ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) ) |
| 87 | 82 86 | impbii | |- ( E. b ( X = <. a , b >. /\ ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) <-> ( X = <. a , (/) >. /\ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) ) |
| 88 | 87 | exbii | |- ( E. a E. b ( X = <. a , b >. /\ ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) <-> E. a ( X = <. a , (/) >. /\ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) ) |
| 89 | 88 | a1i | |- ( z e. _om -> ( E. a E. b ( X = <. a , b >. /\ ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) <-> E. a ( X = <. a , (/) >. /\ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) ) ) |
| 90 | opeq1 | |- ( x = a -> <. x , (/) >. = <. a , (/) >. ) |
|
| 91 | 90 | eqeq2d | |- ( x = a -> ( X = <. x , (/) >. <-> X = <. a , (/) >. ) ) |
| 92 | eqeq1 | |- ( x = a -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> a = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
|
| 93 | 92 | rexbidv | |- ( x = a -> ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 94 | eqeq1 | |- ( x = a -> ( x = A.g i ( 1st ` u ) <-> a = A.g i ( 1st ` u ) ) ) |
|
| 95 | 94 | rexbidv | |- ( x = a -> ( E. i e. _om x = A.g i ( 1st ` u ) <-> E. i e. _om a = A.g i ( 1st ` u ) ) ) |
| 96 | 93 95 | orbi12d | |- ( x = a -> ( ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) |
| 97 | 96 | rexbidv | |- ( x = a -> ( E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) |
| 98 | 97 | anbi2d | |- ( x = a -> ( ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) <-> ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) ) |
| 99 | 91 98 | anbi12d | |- ( x = a -> ( ( X = <. x , (/) >. /\ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) <-> ( X = <. a , (/) >. /\ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) ) ) |
| 100 | 99 | cbvexvw | |- ( E. x ( X = <. x , (/) >. /\ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) <-> E. a ( X = <. a , (/) >. /\ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) ) |
| 101 | 89 100 | bitr4di | |- ( z e. _om -> ( E. a E. b ( X = <. a , b >. /\ ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) <-> E. x ( X = <. x , (/) >. /\ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) ) |
| 102 | 101 | adantr | |- ( ( z e. _om /\ ( X e. ( S ` z ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` z ) ) ) ) -> ( E. a E. b ( X = <. a , b >. /\ ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) <-> E. x ( X = <. x , (/) >. /\ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) ) |
| 103 | 71 102 | orbi12d | |- ( ( z e. _om /\ ( X e. ( S ` z ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` z ) ) ) ) -> ( ( X e. ( S ` z ) \/ E. a E. b ( X = <. a , b >. /\ ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) ) <-> ( E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` z ) ) \/ E. x ( X = <. x , (/) >. /\ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) ) ) |
| 104 | 19.43 | |- ( E. x ( ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` z ) ) \/ ( X = <. x , (/) >. /\ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) <-> ( E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` z ) ) \/ E. x ( X = <. x , (/) >. /\ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) ) |
|
| 105 | andi | |- ( ( X = <. x , (/) >. /\ ( <. x , (/) >. e. ( S ` z ) \/ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) <-> ( ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` z ) ) \/ ( X = <. x , (/) >. /\ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) ) |
|
| 106 | 105 | bicomi | |- ( ( ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` z ) ) \/ ( X = <. x , (/) >. /\ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) <-> ( X = <. x , (/) >. /\ ( <. x , (/) >. e. ( S ` z ) \/ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) ) |
| 107 | 106 | exbii | |- ( E. x ( ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` z ) ) \/ ( X = <. x , (/) >. /\ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) <-> E. x ( X = <. x , (/) >. /\ ( <. x , (/) >. e. ( S ` z ) \/ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) ) |
| 108 | 104 107 | bitr3i | |- ( ( E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` z ) ) \/ E. x ( X = <. x , (/) >. /\ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) <-> E. x ( X = <. x , (/) >. /\ ( <. x , (/) >. e. ( S ` z ) \/ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) ) |
| 109 | 103 108 | bitrdi | |- ( ( z e. _om /\ ( X e. ( S ` z ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` z ) ) ) ) -> ( ( X e. ( S ` z ) \/ E. a E. b ( X = <. a , b >. /\ ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) ) ) <-> E. x ( X = <. x , (/) >. /\ ( <. x , (/) >. e. ( S ` z ) \/ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) ) ) |
| 110 | 62 | eleq2d | |- ( z e. _om -> ( <. x , (/) >. e. ( S ` suc z ) <-> <. x , (/) >. e. ( ( S ` z ) u. { <. a , b >. | ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) } ) ) ) |
| 111 | elun | |- ( <. x , (/) >. e. ( ( S ` z ) u. { <. a , b >. | ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) } ) <-> ( <. x , (/) >. e. ( S ` z ) \/ <. x , (/) >. e. { <. a , b >. | ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) } ) ) |
|
| 112 | eqeq1 | |- ( a = x -> ( a = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
|
| 113 | 112 | rexbidv | |- ( a = x -> ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 114 | eqeq1 | |- ( a = x -> ( a = A.g i ( 1st ` u ) <-> x = A.g i ( 1st ` u ) ) ) |
|
| 115 | 114 | rexbidv | |- ( a = x -> ( E. i e. _om a = A.g i ( 1st ` u ) <-> E. i e. _om x = A.g i ( 1st ` u ) ) ) |
| 116 | 113 115 | orbi12d | |- ( a = x -> ( ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) <-> ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 117 | 116 | rexbidv | |- ( a = x -> ( E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) <-> E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 118 | 83 117 | bi2anan9r | |- ( ( a = x /\ b = (/) ) -> ( ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) <-> ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) |
| 119 | 42 43 118 | opelopaba | |- ( <. x , (/) >. e. { <. a , b >. | ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) } <-> ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 120 | 119 | orbi2i | |- ( ( <. x , (/) >. e. ( S ` z ) \/ <. x , (/) >. e. { <. a , b >. | ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) } ) <-> ( <. x , (/) >. e. ( S ` z ) \/ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) |
| 121 | 111 120 | bitri | |- ( <. x , (/) >. e. ( ( S ` z ) u. { <. a , b >. | ( b = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) a = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om a = A.g i ( 1st ` u ) ) ) } ) <-> ( <. x , (/) >. e. ( S ` z ) \/ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) |
| 122 | 110 121 | bitrdi | |- ( z e. _om -> ( <. x , (/) >. e. ( S ` suc z ) <-> ( <. x , (/) >. e. ( S ` z ) \/ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) ) |
| 123 | 122 | anbi2d | |- ( z e. _om -> ( ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` suc z ) ) <-> ( X = <. x , (/) >. /\ ( <. x , (/) >. e. ( S ` z ) \/ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) ) ) |
| 124 | 123 | exbidv | |- ( z e. _om -> ( E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` suc z ) ) <-> E. x ( X = <. x , (/) >. /\ ( <. x , (/) >. e. ( S ` z ) \/ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) ) ) |
| 125 | 124 | bicomd | |- ( z e. _om -> ( E. x ( X = <. x , (/) >. /\ ( <. x , (/) >. e. ( S ` z ) \/ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` suc z ) ) ) ) |
| 126 | 125 | adantr | |- ( ( z e. _om /\ ( X e. ( S ` z ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` z ) ) ) ) -> ( E. x ( X = <. x , (/) >. /\ ( <. x , (/) >. e. ( S ` z ) \/ ( (/) = (/) /\ E. u e. ( S ` z ) ( E. v e. ( S ` z ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` suc z ) ) ) ) |
| 127 | 70 109 126 | 3bitrd | |- ( ( z e. _om /\ ( X e. ( S ` z ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` z ) ) ) ) -> ( X e. ( S ` suc z ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` suc z ) ) ) ) |
| 128 | 127 | ex | |- ( z e. _om -> ( ( X e. ( S ` z ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` z ) ) ) -> ( X e. ( S ` suc z ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` suc z ) ) ) ) ) |
| 129 | 7 13 19 25 61 128 | finds | |- ( N e. _om -> ( X e. ( S ` N ) <-> E. x ( X = <. x , (/) >. /\ <. x , (/) >. e. ( S ` N ) ) ) ) |