This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at (/) . (Contributed by AV, 14-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satf00 | ⊢ ( ( ∅ Sat ∅ ) ‘ ∅ ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 | ⊢ ∅ ∈ ω | |
| 2 | elelsuc | ⊢ ( ∅ ∈ ω → ∅ ∈ suc ω ) | |
| 3 | satf0sucom | ⊢ ( ∅ ∈ suc ω → ( ( ∅ Sat ∅ ) ‘ ∅ ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ ∅ ) ) | |
| 4 | 1 2 3 | mp2b | ⊢ ( ( ∅ Sat ∅ ) ‘ ∅ ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ ∅ ) |
| 5 | omex | ⊢ ω ∈ V | |
| 6 | 5 5 | xpex | ⊢ ( ω × ω ) ∈ V |
| 7 | xpexg | ⊢ ( ( ω ∈ V ∧ ( ω × ω ) ∈ V ) → ( ω × ( ω × ω ) ) ∈ V ) | |
| 8 | simpl | ⊢ ( ( ω ∈ V ∧ ( ω × ω ) ∈ V ) → ω ∈ V ) | |
| 9 | goelel3xp | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑖 ∈𝑔 𝑗 ) ∈ ( ω × ( ω × ω ) ) ) | |
| 10 | eleq1 | ⊢ ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑥 ∈ ( ω × ( ω × ω ) ) ↔ ( 𝑖 ∈𝑔 𝑗 ) ∈ ( ω × ( ω × ω ) ) ) ) | |
| 11 | 9 10 | syl5ibrcom | ⊢ ( ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) → ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) → 𝑥 ∈ ( ω × ( ω × ω ) ) ) ) |
| 12 | 11 | rexlimivv | ⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) → 𝑥 ∈ ( ω × ( ω × ω ) ) ) |
| 13 | 12 | ad2antll | ⊢ ( ( ( ω ∈ V ∧ ( ω × ω ) ∈ V ) ∧ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) → 𝑥 ∈ ( ω × ( ω × ω ) ) ) |
| 14 | eleq1 | ⊢ ( 𝑦 = ∅ → ( 𝑦 ∈ ω ↔ ∅ ∈ ω ) ) | |
| 15 | 1 14 | mpbiri | ⊢ ( 𝑦 = ∅ → 𝑦 ∈ ω ) |
| 16 | 15 | ad2antrl | ⊢ ( ( ( ω ∈ V ∧ ( ω × ω ) ∈ V ) ∧ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) ) → 𝑦 ∈ ω ) |
| 17 | 7 8 13 16 | opabex2 | ⊢ ( ( ω ∈ V ∧ ( ω × ω ) ∈ V ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ∈ V ) |
| 18 | 5 6 17 | mp2an | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ∈ V |
| 19 | 18 | rdg0 | ⊢ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ ∅ ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } |
| 20 | 4 19 | eqtri | ⊢ ( ( ∅ Sat ∅ ) ‘ ∅ ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } |