This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 19.43 of Margaris p. 90. (Contributed by NM, 12-Mar-1993) (Proof shortened by Wolf Lammen, 27-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 19.43 | ⊢ ( ∃ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-or | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ 𝜑 → 𝜓 ) ) | |
| 2 | 1 | exbii | ⊢ ( ∃ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ∃ 𝑥 ( ¬ 𝜑 → 𝜓 ) ) |
| 3 | 19.35 | ⊢ ( ∃ 𝑥 ( ¬ 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 ¬ 𝜑 → ∃ 𝑥 𝜓 ) ) | |
| 4 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 ) | |
| 5 | 4 | imbi1i | ⊢ ( ( ∀ 𝑥 ¬ 𝜑 → ∃ 𝑥 𝜓 ) ↔ ( ¬ ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) |
| 6 | 2 3 5 | 3bitri | ⊢ ( ∃ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) |
| 7 | df-or | ⊢ ( ( ∃ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ↔ ( ¬ ∃ 𝑥 𝜑 → ∃ 𝑥 𝜓 ) ) | |
| 8 | 6 7 | bitr4i | ⊢ ( ∃ 𝑥 ( 𝜑 ∨ 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) ) |