This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rpnnen2.1 | |- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
|
| Assertion | rpnnen2lem3 | |- seq 1 ( + , ( F ` NN ) ) ~~> ( 1 / 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | |- F = ( x e. ~P NN |-> ( n e. NN |-> if ( n e. x , ( ( 1 / 3 ) ^ n ) , 0 ) ) ) |
|
| 2 | 1re | |- 1 e. RR |
|
| 3 | 3nn | |- 3 e. NN |
|
| 4 | nndivre | |- ( ( 1 e. RR /\ 3 e. NN ) -> ( 1 / 3 ) e. RR ) |
|
| 5 | 2 3 4 | mp2an | |- ( 1 / 3 ) e. RR |
| 6 | 5 | recni | |- ( 1 / 3 ) e. CC |
| 7 | 6 | a1i | |- ( T. -> ( 1 / 3 ) e. CC ) |
| 8 | 0re | |- 0 e. RR |
|
| 9 | 3re | |- 3 e. RR |
|
| 10 | 3pos | |- 0 < 3 |
|
| 11 | 9 10 | recgt0ii | |- 0 < ( 1 / 3 ) |
| 12 | 8 5 11 | ltleii | |- 0 <_ ( 1 / 3 ) |
| 13 | absid | |- ( ( ( 1 / 3 ) e. RR /\ 0 <_ ( 1 / 3 ) ) -> ( abs ` ( 1 / 3 ) ) = ( 1 / 3 ) ) |
|
| 14 | 5 12 13 | mp2an | |- ( abs ` ( 1 / 3 ) ) = ( 1 / 3 ) |
| 15 | 1lt3 | |- 1 < 3 |
|
| 16 | recgt1 | |- ( ( 3 e. RR /\ 0 < 3 ) -> ( 1 < 3 <-> ( 1 / 3 ) < 1 ) ) |
|
| 17 | 9 10 16 | mp2an | |- ( 1 < 3 <-> ( 1 / 3 ) < 1 ) |
| 18 | 15 17 | mpbi | |- ( 1 / 3 ) < 1 |
| 19 | 14 18 | eqbrtri | |- ( abs ` ( 1 / 3 ) ) < 1 |
| 20 | 19 | a1i | |- ( T. -> ( abs ` ( 1 / 3 ) ) < 1 ) |
| 21 | 1nn0 | |- 1 e. NN0 |
|
| 22 | 21 | a1i | |- ( T. -> 1 e. NN0 ) |
| 23 | ssid | |- NN C_ NN |
|
| 24 | simpr | |- ( ( T. /\ k e. ( ZZ>= ` 1 ) ) -> k e. ( ZZ>= ` 1 ) ) |
|
| 25 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 26 | 24 25 | eleqtrrdi | |- ( ( T. /\ k e. ( ZZ>= ` 1 ) ) -> k e. NN ) |
| 27 | 1 | rpnnen2lem1 | |- ( ( NN C_ NN /\ k e. NN ) -> ( ( F ` NN ) ` k ) = if ( k e. NN , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 28 | 23 26 27 | sylancr | |- ( ( T. /\ k e. ( ZZ>= ` 1 ) ) -> ( ( F ` NN ) ` k ) = if ( k e. NN , ( ( 1 / 3 ) ^ k ) , 0 ) ) |
| 29 | 26 | iftrued | |- ( ( T. /\ k e. ( ZZ>= ` 1 ) ) -> if ( k e. NN , ( ( 1 / 3 ) ^ k ) , 0 ) = ( ( 1 / 3 ) ^ k ) ) |
| 30 | 28 29 | eqtrd | |- ( ( T. /\ k e. ( ZZ>= ` 1 ) ) -> ( ( F ` NN ) ` k ) = ( ( 1 / 3 ) ^ k ) ) |
| 31 | 7 20 22 30 | geolim2 | |- ( T. -> seq 1 ( + , ( F ` NN ) ) ~~> ( ( ( 1 / 3 ) ^ 1 ) / ( 1 - ( 1 / 3 ) ) ) ) |
| 32 | 31 | mptru | |- seq 1 ( + , ( F ` NN ) ) ~~> ( ( ( 1 / 3 ) ^ 1 ) / ( 1 - ( 1 / 3 ) ) ) |
| 33 | exp1 | |- ( ( 1 / 3 ) e. CC -> ( ( 1 / 3 ) ^ 1 ) = ( 1 / 3 ) ) |
|
| 34 | 6 33 | ax-mp | |- ( ( 1 / 3 ) ^ 1 ) = ( 1 / 3 ) |
| 35 | 3cn | |- 3 e. CC |
|
| 36 | ax-1cn | |- 1 e. CC |
|
| 37 | 3ne0 | |- 3 =/= 0 |
|
| 38 | 35 37 | pm3.2i | |- ( 3 e. CC /\ 3 =/= 0 ) |
| 39 | divsubdir | |- ( ( 3 e. CC /\ 1 e. CC /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( ( 3 - 1 ) / 3 ) = ( ( 3 / 3 ) - ( 1 / 3 ) ) ) |
|
| 40 | 35 36 38 39 | mp3an | |- ( ( 3 - 1 ) / 3 ) = ( ( 3 / 3 ) - ( 1 / 3 ) ) |
| 41 | 3m1e2 | |- ( 3 - 1 ) = 2 |
|
| 42 | 41 | oveq1i | |- ( ( 3 - 1 ) / 3 ) = ( 2 / 3 ) |
| 43 | 35 37 | dividi | |- ( 3 / 3 ) = 1 |
| 44 | 43 | oveq1i | |- ( ( 3 / 3 ) - ( 1 / 3 ) ) = ( 1 - ( 1 / 3 ) ) |
| 45 | 40 42 44 | 3eqtr3ri | |- ( 1 - ( 1 / 3 ) ) = ( 2 / 3 ) |
| 46 | 34 45 | oveq12i | |- ( ( ( 1 / 3 ) ^ 1 ) / ( 1 - ( 1 / 3 ) ) ) = ( ( 1 / 3 ) / ( 2 / 3 ) ) |
| 47 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 48 | divcan7 | |- ( ( 1 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( ( 1 / 3 ) / ( 2 / 3 ) ) = ( 1 / 2 ) ) |
|
| 49 | 36 47 38 48 | mp3an | |- ( ( 1 / 3 ) / ( 2 / 3 ) ) = ( 1 / 2 ) |
| 50 | 46 49 | eqtri | |- ( ( ( 1 / 3 ) ^ 1 ) / ( 1 - ( 1 / 3 ) ) ) = ( 1 / 2 ) |
| 51 | 32 50 | breqtri | |- seq 1 ( + , ( F ` NN ) ) ~~> ( 1 / 2 ) |