This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: According to df-subc , the subcategories ( SubcatC ) of a category C are subsets of the homomorphisms of C (see subcssc and subcss2 ). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcrescrhm.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| rngcrescrhm.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | ||
| rngcrescrhm.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | ||
| rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) | ||
| Assertion | rhmsubc | ⊢ ( 𝜑 → 𝐻 ∈ ( Subcat ‘ ( RngCat ‘ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcrescrhm.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 2 | rngcrescrhm.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| 3 | rngcrescrhm.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | |
| 4 | rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) | |
| 5 | eqidd | ⊢ ( 𝜑 → ( Rng ∩ 𝑈 ) = ( Rng ∩ 𝑈 ) ) | |
| 6 | 1 3 5 | rhmsscrnghm | ⊢ ( 𝜑 → ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ⊆cat ( RngHom ↾ ( ( Rng ∩ 𝑈 ) × ( Rng ∩ 𝑈 ) ) ) ) |
| 7 | 4 | a1i | ⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ) |
| 8 | 2 | a1i | ⊢ ( 𝜑 → 𝐶 = ( RngCat ‘ 𝑈 ) ) |
| 9 | 8 | eqcomd | ⊢ ( 𝜑 → ( RngCat ‘ 𝑈 ) = 𝐶 ) |
| 10 | 9 | fveq2d | ⊢ ( 𝜑 → ( Homf ‘ ( RngCat ‘ 𝑈 ) ) = ( Homf ‘ 𝐶 ) ) |
| 11 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 12 | 2 11 1 | rngchomfeqhom | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) |
| 13 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 14 | 2 11 1 13 | rngchomfval | ⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( RngHom ↾ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
| 15 | 2 11 1 | rngcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Rng ) ) |
| 16 | incom | ⊢ ( 𝑈 ∩ Rng ) = ( Rng ∩ 𝑈 ) | |
| 17 | 15 16 | eqtrdi | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Rng ∩ 𝑈 ) ) |
| 18 | 17 | sqxpeqd | ⊢ ( 𝜑 → ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) = ( ( Rng ∩ 𝑈 ) × ( Rng ∩ 𝑈 ) ) ) |
| 19 | 18 | reseq2d | ⊢ ( 𝜑 → ( RngHom ↾ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) = ( RngHom ↾ ( ( Rng ∩ 𝑈 ) × ( Rng ∩ 𝑈 ) ) ) ) |
| 20 | 14 19 | eqtrd | ⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( RngHom ↾ ( ( Rng ∩ 𝑈 ) × ( Rng ∩ 𝑈 ) ) ) ) |
| 21 | 10 12 20 | 3eqtrd | ⊢ ( 𝜑 → ( Homf ‘ ( RngCat ‘ 𝑈 ) ) = ( RngHom ↾ ( ( Rng ∩ 𝑈 ) × ( Rng ∩ 𝑈 ) ) ) ) |
| 22 | 6 7 21 | 3brtr4d | ⊢ ( 𝜑 → 𝐻 ⊆cat ( Homf ‘ ( RngCat ‘ 𝑈 ) ) ) |
| 23 | 1 2 3 4 | rhmsubclem3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( ( Id ‘ ( RngCat ‘ 𝑈 ) ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ) |
| 24 | 1 2 3 4 | rhmsubclem4 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( RngCat ‘ 𝑈 ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
| 25 | 24 | ralrimivva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( RngCat ‘ 𝑈 ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
| 26 | 25 | ralrimivva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ∀ 𝑦 ∈ 𝑅 ∀ 𝑧 ∈ 𝑅 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( RngCat ‘ 𝑈 ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
| 27 | 23 26 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( ( ( Id ‘ ( RngCat ‘ 𝑈 ) ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑅 ∀ 𝑧 ∈ 𝑅 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( RngCat ‘ 𝑈 ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) |
| 28 | 27 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑅 ( ( ( Id ‘ ( RngCat ‘ 𝑈 ) ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑅 ∀ 𝑧 ∈ 𝑅 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( RngCat ‘ 𝑈 ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) |
| 29 | eqid | ⊢ ( Homf ‘ ( RngCat ‘ 𝑈 ) ) = ( Homf ‘ ( RngCat ‘ 𝑈 ) ) | |
| 30 | eqid | ⊢ ( Id ‘ ( RngCat ‘ 𝑈 ) ) = ( Id ‘ ( RngCat ‘ 𝑈 ) ) | |
| 31 | eqid | ⊢ ( comp ‘ ( RngCat ‘ 𝑈 ) ) = ( comp ‘ ( RngCat ‘ 𝑈 ) ) | |
| 32 | eqid | ⊢ ( RngCat ‘ 𝑈 ) = ( RngCat ‘ 𝑈 ) | |
| 33 | 32 | rngccat | ⊢ ( 𝑈 ∈ 𝑉 → ( RngCat ‘ 𝑈 ) ∈ Cat ) |
| 34 | 1 33 | syl | ⊢ ( 𝜑 → ( RngCat ‘ 𝑈 ) ∈ Cat ) |
| 35 | 1 2 3 4 | rhmsubclem1 | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑅 × 𝑅 ) ) |
| 36 | 29 30 31 34 35 | issubc2 | ⊢ ( 𝜑 → ( 𝐻 ∈ ( Subcat ‘ ( RngCat ‘ 𝑈 ) ) ↔ ( 𝐻 ⊆cat ( Homf ‘ ( RngCat ‘ 𝑈 ) ) ∧ ∀ 𝑥 ∈ 𝑅 ( ( ( Id ‘ ( RngCat ‘ 𝑈 ) ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑅 ∀ 𝑧 ∈ 𝑅 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( RngCat ‘ 𝑈 ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) ) ) |
| 37 | 22 28 36 | mpbir2and | ⊢ ( 𝜑 → 𝐻 ∈ ( Subcat ‘ ( RngCat ‘ 𝑈 ) ) ) |