This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for rhmsubc . (Contributed by AV, 2-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcrescrhm.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| rngcrescrhm.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | ||
| rngcrescrhm.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | ||
| rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) | ||
| Assertion | rhmsubclem1 | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑅 × 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcrescrhm.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 2 | rngcrescrhm.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| 3 | rngcrescrhm.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | |
| 4 | rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) | |
| 5 | eqid | ⊢ ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) = ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) | |
| 6 | ovex | ⊢ ( 𝑥 GrpHom 𝑦 ) ∈ V | |
| 7 | 6 | inex1 | ⊢ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ∈ V |
| 8 | 5 7 | fnmpoi | ⊢ ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) Fn ( 𝑅 × 𝑅 ) |
| 9 | 4 | a1i | ⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ) |
| 10 | dfrhm2 | ⊢ RingHom = ( 𝑥 ∈ Ring , 𝑦 ∈ Ring ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) | |
| 11 | 10 | a1i | ⊢ ( 𝜑 → RingHom = ( 𝑥 ∈ Ring , 𝑦 ∈ Ring ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) ) |
| 12 | 11 | reseq1d | ⊢ ( 𝜑 → ( RingHom ↾ ( 𝑅 × 𝑅 ) ) = ( ( 𝑥 ∈ Ring , 𝑦 ∈ Ring ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) ↾ ( 𝑅 × 𝑅 ) ) ) |
| 13 | inss1 | ⊢ ( Ring ∩ 𝑈 ) ⊆ Ring | |
| 14 | 3 13 | eqsstrdi | ⊢ ( 𝜑 → 𝑅 ⊆ Ring ) |
| 15 | resmpo | ⊢ ( ( 𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring ) → ( ( 𝑥 ∈ Ring , 𝑦 ∈ Ring ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) ↾ ( 𝑅 × 𝑅 ) ) = ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) ) | |
| 16 | 14 14 15 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ Ring , 𝑦 ∈ Ring ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) ↾ ( 𝑅 × 𝑅 ) ) = ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) ) |
| 17 | 9 12 16 | 3eqtrd | ⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) ) |
| 18 | 17 | fneq1d | ⊢ ( 𝜑 → ( 𝐻 Fn ( 𝑅 × 𝑅 ) ↔ ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) Fn ( 𝑅 × 𝑅 ) ) ) |
| 19 | 8 18 | mpbiri | ⊢ ( 𝜑 → 𝐻 Fn ( 𝑅 × 𝑅 ) ) |