This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the non-unital ring homomorphisms between non-unital rings (in the same universe). (Contributed by AV, 1-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmsscrnghm.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| rhmsscrnghm.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | ||
| rhmsscrnghm.s | ⊢ ( 𝜑 → 𝑆 = ( Rng ∩ 𝑈 ) ) | ||
| Assertion | rhmsscrnghm | ⊢ ( 𝜑 → ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ⊆cat ( RngHom ↾ ( 𝑆 × 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmsscrnghm.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 2 | rhmsscrnghm.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | |
| 3 | rhmsscrnghm.s | ⊢ ( 𝜑 → 𝑆 = ( Rng ∩ 𝑈 ) ) | |
| 4 | ringrng | ⊢ ( 𝑟 ∈ Ring → 𝑟 ∈ Rng ) | |
| 5 | 4 | a1i | ⊢ ( 𝜑 → ( 𝑟 ∈ Ring → 𝑟 ∈ Rng ) ) |
| 6 | 5 | ssrdv | ⊢ ( 𝜑 → Ring ⊆ Rng ) |
| 7 | 6 | ssrind | ⊢ ( 𝜑 → ( Ring ∩ 𝑈 ) ⊆ ( Rng ∩ 𝑈 ) ) |
| 8 | 7 2 3 | 3sstr4d | ⊢ ( 𝜑 → 𝑅 ⊆ 𝑆 ) |
| 9 | ovres | ⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) → ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
| 11 | 10 | eleq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( ℎ ∈ ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) ↔ ℎ ∈ ( 𝑥 RingHom 𝑦 ) ) ) |
| 12 | rhmisrnghm | ⊢ ( ℎ ∈ ( 𝑥 RingHom 𝑦 ) → ℎ ∈ ( 𝑥 RngHom 𝑦 ) ) | |
| 13 | 8 | sseld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑅 → 𝑥 ∈ 𝑆 ) ) |
| 14 | 8 | sseld | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑅 → 𝑦 ∈ 𝑆 ) ) |
| 15 | 13 14 | anim12d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) → ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ) |
| 16 | 15 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) |
| 17 | ovres | ⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( RngHom ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 𝑥 RngHom 𝑦 ) ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 𝑥 ( RngHom ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 𝑥 RngHom 𝑦 ) ) |
| 19 | 18 | eleq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( ℎ ∈ ( 𝑥 ( RngHom ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ↔ ℎ ∈ ( 𝑥 RngHom 𝑦 ) ) ) |
| 20 | 12 19 | imbitrrid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( ℎ ∈ ( 𝑥 RingHom 𝑦 ) → ℎ ∈ ( 𝑥 ( RngHom ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ) ) |
| 21 | 11 20 | sylbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( ℎ ∈ ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) → ℎ ∈ ( 𝑥 ( RngHom ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ) ) |
| 22 | 21 | ssrdv | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) ⊆ ( 𝑥 ( RngHom ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ) |
| 23 | 22 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) ⊆ ( 𝑥 ( RngHom ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ) |
| 24 | inss1 | ⊢ ( Ring ∩ 𝑈 ) ⊆ Ring | |
| 25 | 2 24 | eqsstrdi | ⊢ ( 𝜑 → 𝑅 ⊆ Ring ) |
| 26 | xpss12 | ⊢ ( ( 𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring ) → ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) | |
| 27 | 25 25 26 | syl2anc | ⊢ ( 𝜑 → ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) |
| 28 | rhmfn | ⊢ RingHom Fn ( Ring × Ring ) | |
| 29 | fnssresb | ⊢ ( RingHom Fn ( Ring × Ring ) → ( ( RingHom ↾ ( 𝑅 × 𝑅 ) ) Fn ( 𝑅 × 𝑅 ) ↔ ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) ) | |
| 30 | 28 29 | mp1i | ⊢ ( 𝜑 → ( ( RingHom ↾ ( 𝑅 × 𝑅 ) ) Fn ( 𝑅 × 𝑅 ) ↔ ( 𝑅 × 𝑅 ) ⊆ ( Ring × Ring ) ) ) |
| 31 | 27 30 | mpbird | ⊢ ( 𝜑 → ( RingHom ↾ ( 𝑅 × 𝑅 ) ) Fn ( 𝑅 × 𝑅 ) ) |
| 32 | inss1 | ⊢ ( Rng ∩ 𝑈 ) ⊆ Rng | |
| 33 | 3 32 | eqsstrdi | ⊢ ( 𝜑 → 𝑆 ⊆ Rng ) |
| 34 | xpss12 | ⊢ ( ( 𝑆 ⊆ Rng ∧ 𝑆 ⊆ Rng ) → ( 𝑆 × 𝑆 ) ⊆ ( Rng × Rng ) ) | |
| 35 | 33 33 34 | syl2anc | ⊢ ( 𝜑 → ( 𝑆 × 𝑆 ) ⊆ ( Rng × Rng ) ) |
| 36 | rnghmfn | ⊢ RngHom Fn ( Rng × Rng ) | |
| 37 | fnssresb | ⊢ ( RngHom Fn ( Rng × Rng ) → ( ( RngHom ↾ ( 𝑆 × 𝑆 ) ) Fn ( 𝑆 × 𝑆 ) ↔ ( 𝑆 × 𝑆 ) ⊆ ( Rng × Rng ) ) ) | |
| 38 | 36 37 | mp1i | ⊢ ( 𝜑 → ( ( RngHom ↾ ( 𝑆 × 𝑆 ) ) Fn ( 𝑆 × 𝑆 ) ↔ ( 𝑆 × 𝑆 ) ⊆ ( Rng × Rng ) ) ) |
| 39 | 35 38 | mpbird | ⊢ ( 𝜑 → ( RngHom ↾ ( 𝑆 × 𝑆 ) ) Fn ( 𝑆 × 𝑆 ) ) |
| 40 | incom | ⊢ ( Rng ∩ 𝑈 ) = ( 𝑈 ∩ Rng ) | |
| 41 | inex1g | ⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ Rng ) ∈ V ) | |
| 42 | 40 41 | eqeltrid | ⊢ ( 𝑈 ∈ 𝑉 → ( Rng ∩ 𝑈 ) ∈ V ) |
| 43 | 1 42 | syl | ⊢ ( 𝜑 → ( Rng ∩ 𝑈 ) ∈ V ) |
| 44 | 3 43 | eqeltrd | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 45 | 31 39 44 | isssc | ⊢ ( 𝜑 → ( ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ⊆cat ( RngHom ↾ ( 𝑆 × 𝑆 ) ) ↔ ( 𝑅 ⊆ 𝑆 ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) ⊆ ( 𝑥 ( RngHom ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ) ) ) |
| 46 | 8 23 45 | mpbir2and | ⊢ ( 𝜑 → ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ⊆cat ( RngHom ↾ ( 𝑆 × 𝑆 ) ) ) |