This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Set of arrows of the category of non-unital rings (in a universe). (Contributed by AV, 27-Feb-2020) (Revised by AV, 8-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcbas.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| rngcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| rngcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| rngchomfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| Assertion | rngchomfval | ⊢ ( 𝜑 → 𝐻 = ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcbas.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| 2 | rngcbas.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | rngcbas.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 4 | rngchomfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 5 | 1 2 3 | rngcbas | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Rng ) ) |
| 6 | eqidd | ⊢ ( 𝜑 → ( RngHom ↾ ( 𝐵 × 𝐵 ) ) = ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) | |
| 7 | 1 3 5 6 | rngcval | ⊢ ( 𝜑 → 𝐶 = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) ) |
| 8 | 7 | fveq2d | ⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( Hom ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) ) ) |
| 9 | 4 8 | eqtrid | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) ) ) |
| 10 | eqid | ⊢ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) = ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) | |
| 11 | eqid | ⊢ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) | |
| 12 | fvexd | ⊢ ( 𝜑 → ( ExtStrCat ‘ 𝑈 ) ∈ V ) | |
| 13 | 5 6 | rnghmresfn | ⊢ ( 𝜑 → ( RngHom ↾ ( 𝐵 × 𝐵 ) ) Fn ( 𝐵 × 𝐵 ) ) |
| 14 | inss1 | ⊢ ( 𝑈 ∩ Rng ) ⊆ 𝑈 | |
| 15 | 14 | a1i | ⊢ ( 𝜑 → ( 𝑈 ∩ Rng ) ⊆ 𝑈 ) |
| 16 | eqid | ⊢ ( ExtStrCat ‘ 𝑈 ) = ( ExtStrCat ‘ 𝑈 ) | |
| 17 | 16 3 | estrcbas | ⊢ ( 𝜑 → 𝑈 = ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
| 18 | 17 | eqcomd | ⊢ ( 𝜑 → ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) = 𝑈 ) |
| 19 | 15 5 18 | 3sstr4d | ⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ ( ExtStrCat ‘ 𝑈 ) ) ) |
| 20 | 10 11 12 13 19 | reschom | ⊢ ( 𝜑 → ( RngHom ↾ ( 𝐵 × 𝐵 ) ) = ( Hom ‘ ( ( ExtStrCat ‘ 𝑈 ) ↾cat ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) ) ) |
| 21 | 9 20 | eqtr4d | ⊢ ( 𝜑 → 𝐻 = ( RngHom ↾ ( 𝐵 × 𝐵 ) ) ) |