This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element in the set of subcategories is a subset of the category. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subcixp.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) | |
| subcssc.h | ⊢ 𝐻 = ( Homf ‘ 𝐶 ) | ||
| Assertion | subcssc | ⊢ ( 𝜑 → 𝐽 ⊆cat 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcixp.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) | |
| 2 | subcssc.h | ⊢ 𝐻 = ( Homf ‘ 𝐶 ) | |
| 3 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 4 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 5 | subcrcl | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐶 ∈ Cat ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 7 | eqidd | ⊢ ( 𝜑 → dom dom 𝐽 = dom dom 𝐽 ) | |
| 8 | 2 3 4 6 7 | issubc | ⊢ ( 𝜑 → ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) ↔ ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ dom dom 𝐽 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ dom dom 𝐽 ∀ 𝑧 ∈ dom dom 𝐽 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) ) |
| 9 | 1 8 | mpbid | ⊢ ( 𝜑 → ( 𝐽 ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ dom dom 𝐽 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ∧ ∀ 𝑦 ∈ dom dom 𝐽 ∀ 𝑧 ∈ dom dom 𝐽 ∀ 𝑓 ∈ ( 𝑥 𝐽 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐽 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐽 𝑧 ) ) ) ) |
| 10 | 9 | simpld | ⊢ ( 𝜑 → 𝐽 ⊆cat 𝐻 ) |