This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: According to df-subc , the subcategories ( SubcatC ) of a category C are subsets of the homomorphisms of C (see subcssc and subcss2 ). Therefore, the set of unital ring homomorphisms is a "subcategory" of the category of non-unital rings. (Contributed by AV, 2-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcrescrhm.u | |- ( ph -> U e. V ) |
|
| rngcrescrhm.c | |- C = ( RngCat ` U ) |
||
| rngcrescrhm.r | |- ( ph -> R = ( Ring i^i U ) ) |
||
| rngcrescrhm.h | |- H = ( RingHom |` ( R X. R ) ) |
||
| Assertion | rhmsubc | |- ( ph -> H e. ( Subcat ` ( RngCat ` U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcrescrhm.u | |- ( ph -> U e. V ) |
|
| 2 | rngcrescrhm.c | |- C = ( RngCat ` U ) |
|
| 3 | rngcrescrhm.r | |- ( ph -> R = ( Ring i^i U ) ) |
|
| 4 | rngcrescrhm.h | |- H = ( RingHom |` ( R X. R ) ) |
|
| 5 | eqidd | |- ( ph -> ( Rng i^i U ) = ( Rng i^i U ) ) |
|
| 6 | 1 3 5 | rhmsscrnghm | |- ( ph -> ( RingHom |` ( R X. R ) ) C_cat ( RngHom |` ( ( Rng i^i U ) X. ( Rng i^i U ) ) ) ) |
| 7 | 4 | a1i | |- ( ph -> H = ( RingHom |` ( R X. R ) ) ) |
| 8 | 2 | a1i | |- ( ph -> C = ( RngCat ` U ) ) |
| 9 | 8 | eqcomd | |- ( ph -> ( RngCat ` U ) = C ) |
| 10 | 9 | fveq2d | |- ( ph -> ( Homf ` ( RngCat ` U ) ) = ( Homf ` C ) ) |
| 11 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 12 | 2 11 1 | rngchomfeqhom | |- ( ph -> ( Homf ` C ) = ( Hom ` C ) ) |
| 13 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 14 | 2 11 1 13 | rngchomfval | |- ( ph -> ( Hom ` C ) = ( RngHom |` ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 15 | 2 11 1 | rngcbas | |- ( ph -> ( Base ` C ) = ( U i^i Rng ) ) |
| 16 | incom | |- ( U i^i Rng ) = ( Rng i^i U ) |
|
| 17 | 15 16 | eqtrdi | |- ( ph -> ( Base ` C ) = ( Rng i^i U ) ) |
| 18 | 17 | sqxpeqd | |- ( ph -> ( ( Base ` C ) X. ( Base ` C ) ) = ( ( Rng i^i U ) X. ( Rng i^i U ) ) ) |
| 19 | 18 | reseq2d | |- ( ph -> ( RngHom |` ( ( Base ` C ) X. ( Base ` C ) ) ) = ( RngHom |` ( ( Rng i^i U ) X. ( Rng i^i U ) ) ) ) |
| 20 | 14 19 | eqtrd | |- ( ph -> ( Hom ` C ) = ( RngHom |` ( ( Rng i^i U ) X. ( Rng i^i U ) ) ) ) |
| 21 | 10 12 20 | 3eqtrd | |- ( ph -> ( Homf ` ( RngCat ` U ) ) = ( RngHom |` ( ( Rng i^i U ) X. ( Rng i^i U ) ) ) ) |
| 22 | 6 7 21 | 3brtr4d | |- ( ph -> H C_cat ( Homf ` ( RngCat ` U ) ) ) |
| 23 | 1 2 3 4 | rhmsubclem3 | |- ( ( ph /\ x e. R ) -> ( ( Id ` ( RngCat ` U ) ) ` x ) e. ( x H x ) ) |
| 24 | 1 2 3 4 | rhmsubclem4 | |- ( ( ( ( ph /\ x e. R ) /\ ( y e. R /\ z e. R ) ) /\ ( f e. ( x H y ) /\ g e. ( y H z ) ) ) -> ( g ( <. x , y >. ( comp ` ( RngCat ` U ) ) z ) f ) e. ( x H z ) ) |
| 25 | 24 | ralrimivva | |- ( ( ( ph /\ x e. R ) /\ ( y e. R /\ z e. R ) ) -> A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` ( RngCat ` U ) ) z ) f ) e. ( x H z ) ) |
| 26 | 25 | ralrimivva | |- ( ( ph /\ x e. R ) -> A. y e. R A. z e. R A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` ( RngCat ` U ) ) z ) f ) e. ( x H z ) ) |
| 27 | 23 26 | jca | |- ( ( ph /\ x e. R ) -> ( ( ( Id ` ( RngCat ` U ) ) ` x ) e. ( x H x ) /\ A. y e. R A. z e. R A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` ( RngCat ` U ) ) z ) f ) e. ( x H z ) ) ) |
| 28 | 27 | ralrimiva | |- ( ph -> A. x e. R ( ( ( Id ` ( RngCat ` U ) ) ` x ) e. ( x H x ) /\ A. y e. R A. z e. R A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` ( RngCat ` U ) ) z ) f ) e. ( x H z ) ) ) |
| 29 | eqid | |- ( Homf ` ( RngCat ` U ) ) = ( Homf ` ( RngCat ` U ) ) |
|
| 30 | eqid | |- ( Id ` ( RngCat ` U ) ) = ( Id ` ( RngCat ` U ) ) |
|
| 31 | eqid | |- ( comp ` ( RngCat ` U ) ) = ( comp ` ( RngCat ` U ) ) |
|
| 32 | eqid | |- ( RngCat ` U ) = ( RngCat ` U ) |
|
| 33 | 32 | rngccat | |- ( U e. V -> ( RngCat ` U ) e. Cat ) |
| 34 | 1 33 | syl | |- ( ph -> ( RngCat ` U ) e. Cat ) |
| 35 | 1 2 3 4 | rhmsubclem1 | |- ( ph -> H Fn ( R X. R ) ) |
| 36 | 29 30 31 34 35 | issubc2 | |- ( ph -> ( H e. ( Subcat ` ( RngCat ` U ) ) <-> ( H C_cat ( Homf ` ( RngCat ` U ) ) /\ A. x e. R ( ( ( Id ` ( RngCat ` U ) ) ` x ) e. ( x H x ) /\ A. y e. R A. z e. R A. f e. ( x H y ) A. g e. ( y H z ) ( g ( <. x , y >. ( comp ` ( RngCat ` U ) ) z ) f ) e. ( x H z ) ) ) ) ) |
| 37 | 22 28 36 | mpbir2and | |- ( ph -> H e. ( Subcat ` ( RngCat ` U ) ) ) |