This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: ( SubcatC ) is the set of all the subcategory specifications of the category C . Like df-subg , this is not actually a collection of categories (as in definition 4.1(a) of Adamek p. 48), but only sets which when given operations from the base category (using df-resc ) form a category. All the objects and all the morphisms of the subcategory belong to the supercategory. The identity of an object, the domain and the codomain of a morphism are the same in the subcategory and the supercategory. The composition of the subcategory is a restriction of the composition of the supercategory. (Contributed by FL, 17-Sep-2009) (Revised by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-subc | ⊢ Subcat = ( 𝑐 ∈ Cat ↦ { ℎ ∣ ( ℎ ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom ℎ / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 ℎ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csubc | ⊢ Subcat | |
| 1 | vc | ⊢ 𝑐 | |
| 2 | ccat | ⊢ Cat | |
| 3 | vh | ⊢ ℎ | |
| 4 | 3 | cv | ⊢ ℎ |
| 5 | cssc | ⊢ ⊆cat | |
| 6 | chomf | ⊢ Homf | |
| 7 | 1 | cv | ⊢ 𝑐 |
| 8 | 7 6 | cfv | ⊢ ( Homf ‘ 𝑐 ) |
| 9 | 4 8 5 | wbr | ⊢ ℎ ⊆cat ( Homf ‘ 𝑐 ) |
| 10 | 4 | cdm | ⊢ dom ℎ |
| 11 | 10 | cdm | ⊢ dom dom ℎ |
| 12 | vs | ⊢ 𝑠 | |
| 13 | vx | ⊢ 𝑥 | |
| 14 | 12 | cv | ⊢ 𝑠 |
| 15 | ccid | ⊢ Id | |
| 16 | 7 15 | cfv | ⊢ ( Id ‘ 𝑐 ) |
| 17 | 13 | cv | ⊢ 𝑥 |
| 18 | 17 16 | cfv | ⊢ ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) |
| 19 | 17 17 4 | co | ⊢ ( 𝑥 ℎ 𝑥 ) |
| 20 | 18 19 | wcel | ⊢ ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 ℎ 𝑥 ) |
| 21 | vy | ⊢ 𝑦 | |
| 22 | vz | ⊢ 𝑧 | |
| 23 | vf | ⊢ 𝑓 | |
| 24 | 21 | cv | ⊢ 𝑦 |
| 25 | 17 24 4 | co | ⊢ ( 𝑥 ℎ 𝑦 ) |
| 26 | vg | ⊢ 𝑔 | |
| 27 | 22 | cv | ⊢ 𝑧 |
| 28 | 24 27 4 | co | ⊢ ( 𝑦 ℎ 𝑧 ) |
| 29 | 26 | cv | ⊢ 𝑔 |
| 30 | 17 24 | cop | ⊢ 〈 𝑥 , 𝑦 〉 |
| 31 | cco | ⊢ comp | |
| 32 | 7 31 | cfv | ⊢ ( comp ‘ 𝑐 ) |
| 33 | 30 27 32 | co | ⊢ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) |
| 34 | 23 | cv | ⊢ 𝑓 |
| 35 | 29 34 33 | co | ⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) |
| 36 | 17 27 4 | co | ⊢ ( 𝑥 ℎ 𝑧 ) |
| 37 | 35 36 | wcel | ⊢ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) |
| 38 | 37 26 28 | wral | ⊢ ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) |
| 39 | 38 23 25 | wral | ⊢ ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) |
| 40 | 39 22 14 | wral | ⊢ ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) |
| 41 | 40 21 14 | wral | ⊢ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) |
| 42 | 20 41 | wa | ⊢ ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 ℎ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ) |
| 43 | 42 13 14 | wral | ⊢ ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 ℎ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ) |
| 44 | 43 12 11 | wsbc | ⊢ [ dom dom ℎ / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 ℎ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ) |
| 45 | 9 44 | wa | ⊢ ( ℎ ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom ℎ / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 ℎ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ) ) |
| 46 | 45 3 | cab | ⊢ { ℎ ∣ ( ℎ ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom ℎ / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 ℎ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ) ) } |
| 47 | 1 2 46 | cmpt | ⊢ ( 𝑐 ∈ Cat ↦ { ℎ ∣ ( ℎ ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom ℎ / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 ℎ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ) ) } ) |
| 48 | 0 47 | wceq | ⊢ Subcat = ( 𝑐 ∈ Cat ↦ { ℎ ∣ ( ℎ ⊆cat ( Homf ‘ 𝑐 ) ∧ [ dom dom ℎ / 𝑠 ] ∀ 𝑥 ∈ 𝑠 ( ( ( Id ‘ 𝑐 ) ‘ 𝑥 ) ∈ ( 𝑥 ℎ 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑠 ∀ 𝑧 ∈ 𝑠 ∀ 𝑓 ∈ ( 𝑥 ℎ 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ℎ 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑐 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ℎ 𝑧 ) ) ) } ) |