This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for rhmsubc . (Contributed by AV, 2-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcrescrhm.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| rngcrescrhm.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | ||
| rngcrescrhm.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | ||
| rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) | ||
| Assertion | rhmsubclem4 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( RngCat ‘ 𝑈 ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcrescrhm.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 2 | rngcrescrhm.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| 3 | rngcrescrhm.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | |
| 4 | rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) | |
| 5 | simpl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝜑 ) | |
| 6 | 5 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝜑 ) |
| 7 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝑥 ∈ 𝑅 ) | |
| 8 | 7 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑥 ∈ 𝑅 ) |
| 9 | simpl | ⊢ ( ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → 𝑦 ∈ 𝑅 ) | |
| 10 | 9 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑦 ∈ 𝑅 ) |
| 11 | 1 2 3 4 | rhmsubclem2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
| 12 | 6 8 10 11 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
| 13 | 12 | eleq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ) ) |
| 14 | simpr | ⊢ ( ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → 𝑧 ∈ 𝑅 ) | |
| 15 | 14 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑧 ∈ 𝑅 ) |
| 16 | 1 2 3 4 | rhmsubclem2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑦 RingHom 𝑧 ) ) |
| 17 | 6 10 15 16 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑦 RingHom 𝑧 ) ) |
| 18 | 17 | eleq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ↔ 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ) ) |
| 19 | 13 18 | anbi12d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ↔ ( 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ) ) ) |
| 20 | rhmco | ⊢ ( ( 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ∧ 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑥 RingHom 𝑧 ) ) | |
| 21 | 20 | ancoms | ⊢ ( ( 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑥 RingHom 𝑧 ) ) |
| 22 | 19 21 | biimtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑥 RingHom 𝑧 ) ) ) |
| 23 | 22 | imp | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( 𝑥 RingHom 𝑧 ) ) |
| 24 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑈 ∈ 𝑉 ) |
| 25 | 2 | eqcomi | ⊢ ( RngCat ‘ 𝑈 ) = 𝐶 |
| 26 | 25 | fveq2i | ⊢ ( comp ‘ ( RngCat ‘ 𝑈 ) ) = ( comp ‘ 𝐶 ) |
| 27 | inss2 | ⊢ ( Ring ∩ 𝑈 ) ⊆ 𝑈 | |
| 28 | 3 27 | eqsstrdi | ⊢ ( 𝜑 → 𝑅 ⊆ 𝑈 ) |
| 29 | 28 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝑥 ∈ 𝑈 ) |
| 30 | 29 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑥 ∈ 𝑈 ) |
| 31 | 30 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑥 ∈ 𝑈 ) |
| 32 | 28 | sseld | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑅 → 𝑦 ∈ 𝑈 ) ) |
| 33 | 32 | adantrd | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → 𝑦 ∈ 𝑈 ) ) |
| 34 | 33 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → 𝑦 ∈ 𝑈 ) ) |
| 35 | 34 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑦 ∈ 𝑈 ) |
| 36 | 35 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑦 ∈ 𝑈 ) |
| 37 | 28 | sseld | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝑅 → 𝑧 ∈ 𝑈 ) ) |
| 38 | 37 | adantld | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → 𝑧 ∈ 𝑈 ) ) |
| 39 | 38 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → 𝑧 ∈ 𝑈 ) ) |
| 40 | 39 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑧 ∈ 𝑈 ) |
| 41 | 40 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑧 ∈ 𝑈 ) |
| 42 | 4 | oveqi | ⊢ ( 𝑥 𝐻 𝑦 ) = ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) |
| 43 | 8 10 | ovresd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑥 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
| 44 | 42 43 | eqtrid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 RingHom 𝑦 ) ) |
| 45 | 44 | eleq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) ) ) |
| 46 | eqid | ⊢ ( Base ‘ 𝑥 ) = ( Base ‘ 𝑥 ) | |
| 47 | eqid | ⊢ ( Base ‘ 𝑦 ) = ( Base ‘ 𝑦 ) | |
| 48 | 46 47 | rhmf | ⊢ ( 𝑓 ∈ ( 𝑥 RingHom 𝑦 ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) |
| 49 | 45 48 | biimtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
| 50 | 49 | com12 | ⊢ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
| 51 | 50 | adantr | ⊢ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) ) |
| 52 | 51 | impcom | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑓 : ( Base ‘ 𝑥 ) ⟶ ( Base ‘ 𝑦 ) ) |
| 53 | 4 | oveqi | ⊢ ( 𝑦 𝐻 𝑧 ) = ( 𝑦 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑧 ) |
| 54 | ovres | ⊢ ( ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑦 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑧 ) = ( 𝑦 RingHom 𝑧 ) ) | |
| 55 | 54 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑦 ( RingHom ↾ ( 𝑅 × 𝑅 ) ) 𝑧 ) = ( 𝑦 RingHom 𝑧 ) ) |
| 56 | 53 55 | eqtrid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑦 RingHom 𝑧 ) ) |
| 57 | 56 | eleq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ↔ 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) ) ) |
| 58 | eqid | ⊢ ( Base ‘ 𝑧 ) = ( Base ‘ 𝑧 ) | |
| 59 | 47 58 | rhmf | ⊢ ( 𝑔 ∈ ( 𝑦 RingHom 𝑧 ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) |
| 60 | 57 59 | biimtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) ) |
| 61 | 60 | com12 | ⊢ ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) ) |
| 62 | 61 | adantl | ⊢ ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) ) |
| 63 | 62 | impcom | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → 𝑔 : ( Base ‘ 𝑦 ) ⟶ ( Base ‘ 𝑧 ) ) |
| 64 | 2 24 26 31 36 41 52 63 | rngcco | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( RngCat ‘ 𝑈 ) ) 𝑧 ) 𝑓 ) = ( 𝑔 ∘ 𝑓 ) ) |
| 65 | 1 2 3 4 | rhmsubclem2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
| 66 | 6 8 15 65 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
| 67 | 66 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑥 RingHom 𝑧 ) ) |
| 68 | 23 64 67 | 3eltr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) ∧ ( 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑅 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( RngCat ‘ 𝑈 ) ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |