This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 3 for rhmsubc . (Contributed by AV, 2-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcrescrhm.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| rngcrescrhm.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | ||
| rngcrescrhm.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | ||
| rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) | ||
| Assertion | rhmsubclem3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( ( Id ‘ ( RngCat ‘ 𝑈 ) ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcrescrhm.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 2 | rngcrescrhm.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| 3 | rngcrescrhm.r | ⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) | |
| 4 | rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) | |
| 5 | 3 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑅 ↔ 𝑥 ∈ ( Ring ∩ 𝑈 ) ) ) |
| 6 | elinel1 | ⊢ ( 𝑥 ∈ ( Ring ∩ 𝑈 ) → 𝑥 ∈ Ring ) | |
| 7 | 5 6 | biimtrdi | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑅 → 𝑥 ∈ Ring ) ) |
| 8 | 7 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝑥 ∈ Ring ) |
| 9 | eqid | ⊢ ( Base ‘ 𝑥 ) = ( Base ‘ 𝑥 ) | |
| 10 | 9 | idrhm | ⊢ ( 𝑥 ∈ Ring → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) ) |
| 11 | 8 10 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( I ↾ ( Base ‘ 𝑥 ) ) ∈ ( 𝑥 RingHom 𝑥 ) ) |
| 12 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 13 | 2 | eqcomi | ⊢ ( RngCat ‘ 𝑈 ) = 𝐶 |
| 14 | 13 | fveq2i | ⊢ ( Id ‘ ( RngCat ‘ 𝑈 ) ) = ( Id ‘ 𝐶 ) |
| 15 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝑈 ∈ 𝑉 ) |
| 16 | incom | ⊢ ( Ring ∩ 𝑈 ) = ( 𝑈 ∩ Ring ) | |
| 17 | ringssrng | ⊢ Ring ⊆ Rng | |
| 18 | sslin | ⊢ ( Ring ⊆ Rng → ( 𝑈 ∩ Ring ) ⊆ ( 𝑈 ∩ Rng ) ) | |
| 19 | 17 18 | mp1i | ⊢ ( 𝜑 → ( 𝑈 ∩ Ring ) ⊆ ( 𝑈 ∩ Rng ) ) |
| 20 | 16 19 | eqsstrid | ⊢ ( 𝜑 → ( Ring ∩ 𝑈 ) ⊆ ( 𝑈 ∩ Rng ) ) |
| 21 | 2 12 1 | rngcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Rng ) ) |
| 22 | 20 3 21 | 3sstr4d | ⊢ ( 𝜑 → 𝑅 ⊆ ( Base ‘ 𝐶 ) ) |
| 23 | 22 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 24 | 2 12 14 15 23 9 | rngcid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( ( Id ‘ ( RngCat ‘ 𝑈 ) ) ‘ 𝑥 ) = ( I ↾ ( Base ‘ 𝑥 ) ) ) |
| 25 | 1 2 3 4 | rhmsubclem2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ∧ 𝑥 ∈ 𝑅 ) → ( 𝑥 𝐻 𝑥 ) = ( 𝑥 RingHom 𝑥 ) ) |
| 26 | 25 | 3anidm23 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( 𝑥 𝐻 𝑥 ) = ( 𝑥 RingHom 𝑥 ) ) |
| 27 | 11 24 26 | 3eltr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑅 ) → ( ( Id ‘ ( RngCat ‘ 𝑈 ) ) ‘ 𝑥 ) ∈ ( 𝑥 𝐻 𝑥 ) ) |