This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The morphisms of a subcategory are a subset of the morphisms of the original. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subcss1.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) | |
| subcss1.2 | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑆 × 𝑆 ) ) | ||
| subcss2.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| subcss2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | ||
| subcss2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) | ||
| Assertion | subcss2 | ⊢ ( 𝜑 → ( 𝑋 𝐽 𝑌 ) ⊆ ( 𝑋 𝐻 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcss1.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) | |
| 2 | subcss1.2 | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑆 × 𝑆 ) ) | |
| 3 | subcss2.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | subcss2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) | |
| 5 | subcss2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) | |
| 6 | eqid | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) | |
| 7 | 1 6 | subcssc | ⊢ ( 𝜑 → 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ) |
| 8 | 2 7 4 5 | ssc2 | ⊢ ( 𝜑 → ( 𝑋 𝐽 𝑌 ) ⊆ ( 𝑋 ( Homf ‘ 𝐶 ) 𝑌 ) ) |
| 9 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 10 | 1 2 9 | subcss1 | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝐶 ) ) |
| 11 | 10 4 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 12 | 10 5 | sseldd | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 13 | 6 9 3 11 12 | homfval | ⊢ ( 𝜑 → ( 𝑋 ( Homf ‘ 𝐶 ) 𝑌 ) = ( 𝑋 𝐻 𝑌 ) ) |
| 14 | 8 13 | sseqtrd | ⊢ ( 𝜑 → ( 𝑋 𝐽 𝑌 ) ⊆ ( 𝑋 𝐻 𝑌 ) ) |