This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping J induced by a ring homomorphism F from a subring N of the quotient group Q over F 's kernel K is a ring homomorphism. (Contributed by Thierry Arnoux, 13-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmqusnsg.0 | ⊢ 0 = ( 0g ‘ 𝐻 ) | |
| rhmqusnsg.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) ) | ||
| rhmqusnsg.k | ⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) | ||
| rhmqusnsg.q | ⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) | ||
| rhmqusnsg.j | ⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) | ||
| rhmqusnsg.g | ⊢ ( 𝜑 → 𝐺 ∈ CRing ) | ||
| rhmqusnsg.n | ⊢ ( 𝜑 → 𝑁 ⊆ 𝐾 ) | ||
| rhmqusnsg.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( LIdeal ‘ 𝐺 ) ) | ||
| Assertion | rhmqusnsg | ⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 RingHom 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmqusnsg.0 | ⊢ 0 = ( 0g ‘ 𝐻 ) | |
| 2 | rhmqusnsg.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) ) | |
| 3 | rhmqusnsg.k | ⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) | |
| 4 | rhmqusnsg.q | ⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) | |
| 5 | rhmqusnsg.j | ⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) | |
| 6 | rhmqusnsg.g | ⊢ ( 𝜑 → 𝐺 ∈ CRing ) | |
| 7 | rhmqusnsg.n | ⊢ ( 𝜑 → 𝑁 ⊆ 𝐾 ) | |
| 8 | rhmqusnsg.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( LIdeal ‘ 𝐺 ) ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) | |
| 10 | eqid | ⊢ ( 1r ‘ 𝑄 ) = ( 1r ‘ 𝑄 ) | |
| 11 | eqid | ⊢ ( 1r ‘ 𝐻 ) = ( 1r ‘ 𝐻 ) | |
| 12 | eqid | ⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) | |
| 13 | eqid | ⊢ ( .r ‘ 𝐻 ) = ( .r ‘ 𝐻 ) | |
| 14 | 6 | crngringd | ⊢ ( 𝜑 → 𝐺 ∈ Ring ) |
| 15 | eqid | ⊢ ( LIdeal ‘ 𝐺 ) = ( LIdeal ‘ 𝐺 ) | |
| 16 | 15 | crng2idl | ⊢ ( 𝐺 ∈ CRing → ( LIdeal ‘ 𝐺 ) = ( 2Ideal ‘ 𝐺 ) ) |
| 17 | 6 16 | syl | ⊢ ( 𝜑 → ( LIdeal ‘ 𝐺 ) = ( 2Ideal ‘ 𝐺 ) ) |
| 18 | 8 17 | eleqtrd | ⊢ ( 𝜑 → 𝑁 ∈ ( 2Ideal ‘ 𝐺 ) ) |
| 19 | eqid | ⊢ ( 2Ideal ‘ 𝐺 ) = ( 2Ideal ‘ 𝐺 ) | |
| 20 | eqid | ⊢ ( 1r ‘ 𝐺 ) = ( 1r ‘ 𝐺 ) | |
| 21 | 4 19 20 | qus1 | ⊢ ( ( 𝐺 ∈ Ring ∧ 𝑁 ∈ ( 2Ideal ‘ 𝐺 ) ) → ( 𝑄 ∈ Ring ∧ [ ( 1r ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑁 ) = ( 1r ‘ 𝑄 ) ) ) |
| 22 | 14 18 21 | syl2anc | ⊢ ( 𝜑 → ( 𝑄 ∈ Ring ∧ [ ( 1r ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑁 ) = ( 1r ‘ 𝑄 ) ) ) |
| 23 | 22 | simpld | ⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
| 24 | rhmrcl2 | ⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → 𝐻 ∈ Ring ) | |
| 25 | 2 24 | syl | ⊢ ( 𝜑 → 𝐻 ∈ Ring ) |
| 26 | rhmghm | ⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) | |
| 27 | 2 26 | syl | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 28 | lidlnsg | ⊢ ( ( 𝐺 ∈ Ring ∧ 𝑁 ∈ ( LIdeal ‘ 𝐺 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) | |
| 29 | 14 8 28 | syl2anc | ⊢ ( 𝜑 → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 30 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 31 | 30 20 | ringidcl | ⊢ ( 𝐺 ∈ Ring → ( 1r ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 32 | 14 31 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 33 | 1 27 3 4 5 7 29 32 | ghmqusnsglem1 | ⊢ ( 𝜑 → ( 𝐽 ‘ [ ( 1r ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹 ‘ ( 1r ‘ 𝐺 ) ) ) |
| 34 | 22 | simprd | ⊢ ( 𝜑 → [ ( 1r ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑁 ) = ( 1r ‘ 𝑄 ) ) |
| 35 | 34 | fveq2d | ⊢ ( 𝜑 → ( 𝐽 ‘ [ ( 1r ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐽 ‘ ( 1r ‘ 𝑄 ) ) ) |
| 36 | 20 11 | rhm1 | ⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → ( 𝐹 ‘ ( 1r ‘ 𝐺 ) ) = ( 1r ‘ 𝐻 ) ) |
| 37 | 2 36 | syl | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝐺 ) ) = ( 1r ‘ 𝐻 ) ) |
| 38 | 33 35 37 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐽 ‘ ( 1r ‘ 𝑄 ) ) = ( 1r ‘ 𝐻 ) ) |
| 39 | 2 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) ) |
| 40 | 4 | a1i | ⊢ ( 𝜑 → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) ) |
| 41 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) | |
| 42 | ovexd | ⊢ ( 𝜑 → ( 𝐺 ~QG 𝑁 ) ∈ V ) | |
| 43 | 40 41 42 6 | qusbas | ⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) = ( Base ‘ 𝑄 ) ) |
| 44 | nsgsubg | ⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 45 | eqid | ⊢ ( 𝐺 ~QG 𝑁 ) = ( 𝐺 ~QG 𝑁 ) | |
| 46 | 30 45 | eqger | ⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ) |
| 47 | 29 44 46 | 3syl | ⊢ ( 𝜑 → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ) |
| 48 | 47 | qsss | ⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 49 | 43 48 | eqsstrrd | ⊢ ( 𝜑 → ( Base ‘ 𝑄 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
| 50 | 49 | sselda | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ 𝒫 ( Base ‘ 𝐺 ) ) |
| 51 | 50 | elpwid | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ⊆ ( Base ‘ 𝐺 ) ) |
| 52 | 51 | ad5antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑟 ⊆ ( Base ‘ 𝐺 ) ) |
| 53 | simp-4r | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ 𝑟 ) | |
| 54 | 52 53 | sseldd | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 55 | 49 | sselda | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑠 ∈ 𝒫 ( Base ‘ 𝐺 ) ) |
| 56 | 55 | elpwid | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑠 ⊆ ( Base ‘ 𝐺 ) ) |
| 57 | 56 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑠 ⊆ ( Base ‘ 𝐺 ) ) |
| 58 | 57 | ad4antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑠 ⊆ ( Base ‘ 𝐺 ) ) |
| 59 | simplr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ 𝑠 ) | |
| 60 | 58 59 | sseldd | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 61 | eqid | ⊢ ( .r ‘ 𝐺 ) = ( .r ‘ 𝐺 ) | |
| 62 | 30 61 13 | rhmmul | ⊢ ( ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 63 | 39 54 60 62 | syl3anc | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 64 | 47 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ) |
| 65 | simp-6r | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) ) | |
| 66 | 43 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) = ( Base ‘ 𝑄 ) ) |
| 67 | 65 66 | eleqtrrd | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ) |
| 68 | qsel | ⊢ ( ( ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ∧ 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ∧ 𝑥 ∈ 𝑟 ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) | |
| 69 | 64 67 53 68 | syl3anc | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
| 70 | simp-5r | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑠 ∈ ( Base ‘ 𝑄 ) ) | |
| 71 | 70 66 | eleqtrrd | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑠 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ) |
| 72 | qsel | ⊢ ( ( ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ∧ 𝑠 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ∧ 𝑦 ∈ 𝑠 ) → 𝑠 = [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) | |
| 73 | 64 71 59 72 | syl3anc | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑠 = [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) |
| 74 | 69 73 | oveq12d | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) = ( [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ( .r ‘ 𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) ) |
| 75 | 6 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐺 ∈ CRing ) |
| 76 | 8 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑁 ∈ ( LIdeal ‘ 𝐺 ) ) |
| 77 | 4 30 61 12 75 76 54 60 | qusmulcrng | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ( .r ‘ 𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) = [ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) ) |
| 78 | 74 77 | eqtr2d | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → [ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) = ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) |
| 79 | 78 | fveq2d | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ [ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) ) |
| 80 | 39 26 | syl | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 81 | 7 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑁 ⊆ 𝐾 ) |
| 82 | 29 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 83 | rhmrcl1 | ⊢ ( 𝐹 ∈ ( 𝐺 RingHom 𝐻 ) → 𝐺 ∈ Ring ) | |
| 84 | 39 83 | syl | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐺 ∈ Ring ) |
| 85 | 30 61 84 54 60 | ringcld | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 86 | 1 80 3 4 5 81 82 85 | ghmqusnsglem1 | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ [ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ) ) |
| 87 | 79 86 | eqtr3d | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) = ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝐺 ) 𝑦 ) ) ) |
| 88 | simpllr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 89 | simpr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 90 | 88 89 | oveq12d | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 91 | 63 87 90 | 3eqtr4d | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑦 ∈ 𝑠 ) ∧ ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) = ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) |
| 92 | 27 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 93 | 7 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝑁 ⊆ 𝐾 ) |
| 94 | 29 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 95 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝑠 ∈ ( Base ‘ 𝑄 ) ) | |
| 96 | 1 92 3 4 5 93 94 95 | ghmqusnsglem2 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑦 ∈ 𝑠 ( 𝐽 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 97 | 91 96 | r19.29a | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) = ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) |
| 98 | 27 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 99 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑁 ⊆ 𝐾 ) |
| 100 | 29 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 101 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) ) | |
| 102 | 1 98 3 4 5 99 100 101 | ghmqusnsglem2 | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → ∃ 𝑥 ∈ 𝑟 ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 103 | 97 102 | r19.29a | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) = ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) |
| 104 | 103 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ) → ( 𝐽 ‘ ( 𝑟 ( .r ‘ 𝑄 ) 𝑠 ) ) = ( ( 𝐽 ‘ 𝑟 ) ( .r ‘ 𝐻 ) ( 𝐽 ‘ 𝑠 ) ) ) |
| 105 | 1 27 3 4 5 7 29 | ghmqusnsg | ⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) ) |
| 106 | 9 10 11 12 13 23 25 38 104 105 | isrhm2d | ⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 RingHom 𝐻 ) ) |