This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ghmqusnsg . (Contributed by Thierry Arnoux, 13-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmqusnsg.0 | ⊢ 0 = ( 0g ‘ 𝐻 ) | |
| ghmqusnsg.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) | ||
| ghmqusnsg.k | ⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) | ||
| ghmqusnsg.q | ⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) | ||
| ghmqusnsg.j | ⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) | ||
| ghmqusnsg.n | ⊢ ( 𝜑 → 𝑁 ⊆ 𝐾 ) | ||
| ghmqusnsg.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) | ||
| ghmqusnsglem2.y | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑄 ) ) | ||
| Assertion | ghmqusnsglem2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑌 ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmqusnsg.0 | ⊢ 0 = ( 0g ‘ 𝐻 ) | |
| 2 | ghmqusnsg.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) | |
| 3 | ghmqusnsg.k | ⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) | |
| 4 | ghmqusnsg.q | ⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) | |
| 5 | ghmqusnsg.j | ⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) | |
| 6 | ghmqusnsg.n | ⊢ ( 𝜑 → 𝑁 ⊆ 𝐾 ) | |
| 7 | ghmqusnsg.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) | |
| 8 | ghmqusnsglem2.y | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑄 ) ) | |
| 9 | 4 | a1i | ⊢ ( 𝜑 → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) ) |
| 10 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) | |
| 11 | ovexd | ⊢ ( 𝜑 → ( 𝐺 ~QG 𝑁 ) ∈ V ) | |
| 12 | ghmgrp1 | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ Grp ) | |
| 13 | 2 12 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 14 | 9 10 11 13 | qusbas | ⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) = ( Base ‘ 𝑄 ) ) |
| 15 | 8 14 | eleqtrrd | ⊢ ( 𝜑 → 𝑌 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ) |
| 16 | elqsg | ⊢ ( 𝑌 ∈ ( Base ‘ 𝑄 ) → ( 𝑌 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ) | |
| 17 | 16 | biimpa | ⊢ ( ( 𝑌 ∈ ( Base ‘ 𝑄 ) ∧ 𝑌 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
| 18 | 8 15 17 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
| 19 | nsgsubg | ⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 20 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 21 | eqid | ⊢ ( 𝐺 ~QG 𝑁 ) = ( 𝐺 ~QG 𝑁 ) | |
| 22 | 20 21 | eqger | ⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ) |
| 23 | 7 19 22 | 3syl | ⊢ ( 𝜑 → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ) |
| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ) |
| 25 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) | |
| 26 | ecref | ⊢ ( ( ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 ∈ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) | |
| 27 | 24 25 26 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑥 ∈ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
| 28 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) | |
| 29 | 27 28 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑥 ∈ 𝑌 ) |
| 30 | 28 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐽 ‘ 𝑌 ) = ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ) |
| 31 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 32 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑁 ⊆ 𝐾 ) |
| 33 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 34 | 1 31 3 4 5 32 33 25 | ghmqusnsglem1 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 35 | 30 34 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 36 | 29 35 | jca | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝑥 ∈ 𝑌 ∧ ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 37 | 36 | expl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝑥 ∈ 𝑌 ∧ ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 38 | 37 | reximdv2 | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) → ∃ 𝑥 ∈ 𝑌 ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 39 | 18 38 | mpd | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑌 ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) |