This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping J induced by a ring homomorphism F from a subring N of the quotient group Q over F 's kernel K is a ring homomorphism. (Contributed by Thierry Arnoux, 13-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmqusnsg.0 | |- .0. = ( 0g ` H ) |
|
| rhmqusnsg.f | |- ( ph -> F e. ( G RingHom H ) ) |
||
| rhmqusnsg.k | |- K = ( `' F " { .0. } ) |
||
| rhmqusnsg.q | |- Q = ( G /s ( G ~QG N ) ) |
||
| rhmqusnsg.j | |- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
||
| rhmqusnsg.g | |- ( ph -> G e. CRing ) |
||
| rhmqusnsg.n | |- ( ph -> N C_ K ) |
||
| rhmqusnsg.1 | |- ( ph -> N e. ( LIdeal ` G ) ) |
||
| Assertion | rhmqusnsg | |- ( ph -> J e. ( Q RingHom H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmqusnsg.0 | |- .0. = ( 0g ` H ) |
|
| 2 | rhmqusnsg.f | |- ( ph -> F e. ( G RingHom H ) ) |
|
| 3 | rhmqusnsg.k | |- K = ( `' F " { .0. } ) |
|
| 4 | rhmqusnsg.q | |- Q = ( G /s ( G ~QG N ) ) |
|
| 5 | rhmqusnsg.j | |- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
|
| 6 | rhmqusnsg.g | |- ( ph -> G e. CRing ) |
|
| 7 | rhmqusnsg.n | |- ( ph -> N C_ K ) |
|
| 8 | rhmqusnsg.1 | |- ( ph -> N e. ( LIdeal ` G ) ) |
|
| 9 | eqid | |- ( Base ` Q ) = ( Base ` Q ) |
|
| 10 | eqid | |- ( 1r ` Q ) = ( 1r ` Q ) |
|
| 11 | eqid | |- ( 1r ` H ) = ( 1r ` H ) |
|
| 12 | eqid | |- ( .r ` Q ) = ( .r ` Q ) |
|
| 13 | eqid | |- ( .r ` H ) = ( .r ` H ) |
|
| 14 | 6 | crngringd | |- ( ph -> G e. Ring ) |
| 15 | eqid | |- ( LIdeal ` G ) = ( LIdeal ` G ) |
|
| 16 | 15 | crng2idl | |- ( G e. CRing -> ( LIdeal ` G ) = ( 2Ideal ` G ) ) |
| 17 | 6 16 | syl | |- ( ph -> ( LIdeal ` G ) = ( 2Ideal ` G ) ) |
| 18 | 8 17 | eleqtrd | |- ( ph -> N e. ( 2Ideal ` G ) ) |
| 19 | eqid | |- ( 2Ideal ` G ) = ( 2Ideal ` G ) |
|
| 20 | eqid | |- ( 1r ` G ) = ( 1r ` G ) |
|
| 21 | 4 19 20 | qus1 | |- ( ( G e. Ring /\ N e. ( 2Ideal ` G ) ) -> ( Q e. Ring /\ [ ( 1r ` G ) ] ( G ~QG N ) = ( 1r ` Q ) ) ) |
| 22 | 14 18 21 | syl2anc | |- ( ph -> ( Q e. Ring /\ [ ( 1r ` G ) ] ( G ~QG N ) = ( 1r ` Q ) ) ) |
| 23 | 22 | simpld | |- ( ph -> Q e. Ring ) |
| 24 | rhmrcl2 | |- ( F e. ( G RingHom H ) -> H e. Ring ) |
|
| 25 | 2 24 | syl | |- ( ph -> H e. Ring ) |
| 26 | rhmghm | |- ( F e. ( G RingHom H ) -> F e. ( G GrpHom H ) ) |
|
| 27 | 2 26 | syl | |- ( ph -> F e. ( G GrpHom H ) ) |
| 28 | lidlnsg | |- ( ( G e. Ring /\ N e. ( LIdeal ` G ) ) -> N e. ( NrmSGrp ` G ) ) |
|
| 29 | 14 8 28 | syl2anc | |- ( ph -> N e. ( NrmSGrp ` G ) ) |
| 30 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 31 | 30 20 | ringidcl | |- ( G e. Ring -> ( 1r ` G ) e. ( Base ` G ) ) |
| 32 | 14 31 | syl | |- ( ph -> ( 1r ` G ) e. ( Base ` G ) ) |
| 33 | 1 27 3 4 5 7 29 32 | ghmqusnsglem1 | |- ( ph -> ( J ` [ ( 1r ` G ) ] ( G ~QG N ) ) = ( F ` ( 1r ` G ) ) ) |
| 34 | 22 | simprd | |- ( ph -> [ ( 1r ` G ) ] ( G ~QG N ) = ( 1r ` Q ) ) |
| 35 | 34 | fveq2d | |- ( ph -> ( J ` [ ( 1r ` G ) ] ( G ~QG N ) ) = ( J ` ( 1r ` Q ) ) ) |
| 36 | 20 11 | rhm1 | |- ( F e. ( G RingHom H ) -> ( F ` ( 1r ` G ) ) = ( 1r ` H ) ) |
| 37 | 2 36 | syl | |- ( ph -> ( F ` ( 1r ` G ) ) = ( 1r ` H ) ) |
| 38 | 33 35 37 | 3eqtr3d | |- ( ph -> ( J ` ( 1r ` Q ) ) = ( 1r ` H ) ) |
| 39 | 2 | ad6antr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> F e. ( G RingHom H ) ) |
| 40 | 4 | a1i | |- ( ph -> Q = ( G /s ( G ~QG N ) ) ) |
| 41 | eqidd | |- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
|
| 42 | ovexd | |- ( ph -> ( G ~QG N ) e. _V ) |
|
| 43 | 40 41 42 6 | qusbas | |- ( ph -> ( ( Base ` G ) /. ( G ~QG N ) ) = ( Base ` Q ) ) |
| 44 | nsgsubg | |- ( N e. ( NrmSGrp ` G ) -> N e. ( SubGrp ` G ) ) |
|
| 45 | eqid | |- ( G ~QG N ) = ( G ~QG N ) |
|
| 46 | 30 45 | eqger | |- ( N e. ( SubGrp ` G ) -> ( G ~QG N ) Er ( Base ` G ) ) |
| 47 | 29 44 46 | 3syl | |- ( ph -> ( G ~QG N ) Er ( Base ` G ) ) |
| 48 | 47 | qsss | |- ( ph -> ( ( Base ` G ) /. ( G ~QG N ) ) C_ ~P ( Base ` G ) ) |
| 49 | 43 48 | eqsstrrd | |- ( ph -> ( Base ` Q ) C_ ~P ( Base ` G ) ) |
| 50 | 49 | sselda | |- ( ( ph /\ r e. ( Base ` Q ) ) -> r e. ~P ( Base ` G ) ) |
| 51 | 50 | elpwid | |- ( ( ph /\ r e. ( Base ` Q ) ) -> r C_ ( Base ` G ) ) |
| 52 | 51 | ad5antr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r C_ ( Base ` G ) ) |
| 53 | simp-4r | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> x e. r ) |
|
| 54 | 52 53 | sseldd | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> x e. ( Base ` G ) ) |
| 55 | 49 | sselda | |- ( ( ph /\ s e. ( Base ` Q ) ) -> s e. ~P ( Base ` G ) ) |
| 56 | 55 | elpwid | |- ( ( ph /\ s e. ( Base ` Q ) ) -> s C_ ( Base ` G ) ) |
| 57 | 56 | adantlr | |- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> s C_ ( Base ` G ) ) |
| 58 | 57 | ad4antr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s C_ ( Base ` G ) ) |
| 59 | simplr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> y e. s ) |
|
| 60 | 58 59 | sseldd | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> y e. ( Base ` G ) ) |
| 61 | eqid | |- ( .r ` G ) = ( .r ` G ) |
|
| 62 | 30 61 13 | rhmmul | |- ( ( F e. ( G RingHom H ) /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( F ` ( x ( .r ` G ) y ) ) = ( ( F ` x ) ( .r ` H ) ( F ` y ) ) ) |
| 63 | 39 54 60 62 | syl3anc | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( F ` ( x ( .r ` G ) y ) ) = ( ( F ` x ) ( .r ` H ) ( F ` y ) ) ) |
| 64 | 47 | ad6antr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( G ~QG N ) Er ( Base ` G ) ) |
| 65 | simp-6r | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r e. ( Base ` Q ) ) |
|
| 66 | 43 | ad6antr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( ( Base ` G ) /. ( G ~QG N ) ) = ( Base ` Q ) ) |
| 67 | 65 66 | eleqtrrd | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r e. ( ( Base ` G ) /. ( G ~QG N ) ) ) |
| 68 | qsel | |- ( ( ( G ~QG N ) Er ( Base ` G ) /\ r e. ( ( Base ` G ) /. ( G ~QG N ) ) /\ x e. r ) -> r = [ x ] ( G ~QG N ) ) |
|
| 69 | 64 67 53 68 | syl3anc | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r = [ x ] ( G ~QG N ) ) |
| 70 | simp-5r | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s e. ( Base ` Q ) ) |
|
| 71 | 70 66 | eleqtrrd | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s e. ( ( Base ` G ) /. ( G ~QG N ) ) ) |
| 72 | qsel | |- ( ( ( G ~QG N ) Er ( Base ` G ) /\ s e. ( ( Base ` G ) /. ( G ~QG N ) ) /\ y e. s ) -> s = [ y ] ( G ~QG N ) ) |
|
| 73 | 64 71 59 72 | syl3anc | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s = [ y ] ( G ~QG N ) ) |
| 74 | 69 73 | oveq12d | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( r ( .r ` Q ) s ) = ( [ x ] ( G ~QG N ) ( .r ` Q ) [ y ] ( G ~QG N ) ) ) |
| 75 | 6 | ad6antr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> G e. CRing ) |
| 76 | 8 | ad6antr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> N e. ( LIdeal ` G ) ) |
| 77 | 4 30 61 12 75 76 54 60 | qusmulcrng | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( [ x ] ( G ~QG N ) ( .r ` Q ) [ y ] ( G ~QG N ) ) = [ ( x ( .r ` G ) y ) ] ( G ~QG N ) ) |
| 78 | 74 77 | eqtr2d | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> [ ( x ( .r ` G ) y ) ] ( G ~QG N ) = ( r ( .r ` Q ) s ) ) |
| 79 | 78 | fveq2d | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` [ ( x ( .r ` G ) y ) ] ( G ~QG N ) ) = ( J ` ( r ( .r ` Q ) s ) ) ) |
| 80 | 39 26 | syl | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> F e. ( G GrpHom H ) ) |
| 81 | 7 | ad6antr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> N C_ K ) |
| 82 | 29 | ad6antr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> N e. ( NrmSGrp ` G ) ) |
| 83 | rhmrcl1 | |- ( F e. ( G RingHom H ) -> G e. Ring ) |
|
| 84 | 39 83 | syl | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> G e. Ring ) |
| 85 | 30 61 84 54 60 | ringcld | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( x ( .r ` G ) y ) e. ( Base ` G ) ) |
| 86 | 1 80 3 4 5 81 82 85 | ghmqusnsglem1 | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` [ ( x ( .r ` G ) y ) ] ( G ~QG N ) ) = ( F ` ( x ( .r ` G ) y ) ) ) |
| 87 | 79 86 | eqtr3d | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` ( r ( .r ` Q ) s ) ) = ( F ` ( x ( .r ` G ) y ) ) ) |
| 88 | simpllr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` r ) = ( F ` x ) ) |
|
| 89 | simpr | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` s ) = ( F ` y ) ) |
|
| 90 | 88 89 | oveq12d | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( ( J ` r ) ( .r ` H ) ( J ` s ) ) = ( ( F ` x ) ( .r ` H ) ( F ` y ) ) ) |
| 91 | 63 87 90 | 3eqtr4d | |- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` ( r ( .r ` Q ) s ) ) = ( ( J ` r ) ( .r ` H ) ( J ` s ) ) ) |
| 92 | 27 | ad4antr | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> F e. ( G GrpHom H ) ) |
| 93 | 7 | ad4antr | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> N C_ K ) |
| 94 | 29 | ad4antr | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> N e. ( NrmSGrp ` G ) ) |
| 95 | simpllr | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> s e. ( Base ` Q ) ) |
|
| 96 | 1 92 3 4 5 93 94 95 | ghmqusnsglem2 | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> E. y e. s ( J ` s ) = ( F ` y ) ) |
| 97 | 91 96 | r19.29a | |- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` ( r ( .r ` Q ) s ) ) = ( ( J ` r ) ( .r ` H ) ( J ` s ) ) ) |
| 98 | 27 | ad2antrr | |- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> F e. ( G GrpHom H ) ) |
| 99 | 7 | ad2antrr | |- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> N C_ K ) |
| 100 | 29 | ad2antrr | |- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> N e. ( NrmSGrp ` G ) ) |
| 101 | simplr | |- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> r e. ( Base ` Q ) ) |
|
| 102 | 1 98 3 4 5 99 100 101 | ghmqusnsglem2 | |- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> E. x e. r ( J ` r ) = ( F ` x ) ) |
| 103 | 97 102 | r19.29a | |- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> ( J ` ( r ( .r ` Q ) s ) ) = ( ( J ` r ) ( .r ` H ) ( J ` s ) ) ) |
| 104 | 103 | anasss | |- ( ( ph /\ ( r e. ( Base ` Q ) /\ s e. ( Base ` Q ) ) ) -> ( J ` ( r ( .r ` Q ) s ) ) = ( ( J ` r ) ( .r ` H ) ( J ` s ) ) ) |
| 105 | 1 27 3 4 5 7 29 | ghmqusnsg | |- ( ph -> J e. ( Q GrpHom H ) ) |
| 106 | 9 10 11 12 13 23 25 38 104 105 | isrhm2d | |- ( ph -> J e. ( Q RingHom H ) ) |