This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the ring operation in a quotient ring of a commutative ring. (Contributed by Thierry Arnoux, 1-Sep-2024) (Proof shortened by metakunt, 3-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusmulcrng.h | ⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) | |
| qusmulcrng.v | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| qusmulcrng.p | ⊢ · = ( .r ‘ 𝑅 ) | ||
| qusmulcrng.a | ⊢ × = ( .r ‘ 𝑄 ) | ||
| qusmulcrng.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| qusmulcrng.i | ⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) | ||
| qusmulcrng.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| qusmulcrng.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | qusmulcrng | ⊢ ( 𝜑 → ( [ 𝑋 ] ( 𝑅 ~QG 𝐼 ) × [ 𝑌 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑋 · 𝑌 ) ] ( 𝑅 ~QG 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusmulcrng.h | ⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) | |
| 2 | qusmulcrng.v | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | qusmulcrng.p | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | qusmulcrng.a | ⊢ × = ( .r ‘ 𝑄 ) | |
| 5 | qusmulcrng.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 6 | qusmulcrng.i | ⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) | |
| 7 | qusmulcrng.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | qusmulcrng.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | 5 | crngringd | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 10 | eqid | ⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) | |
| 11 | 10 | crng2idl | ⊢ ( 𝑅 ∈ CRing → ( LIdeal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) ) |
| 12 | 5 11 | syl | ⊢ ( 𝜑 → ( LIdeal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) ) |
| 13 | 6 12 | eleqtrd | ⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 14 | 1 2 3 4 9 13 7 8 | qusmul2idl | ⊢ ( 𝜑 → ( [ 𝑋 ] ( 𝑅 ~QG 𝐼 ) × [ 𝑌 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑋 · 𝑌 ) ] ( 𝑅 ~QG 𝐼 ) ) |