This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ghmqusnsg . (Contributed by Thierry Arnoux, 13-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmqusnsg.0 | ⊢ 0 = ( 0g ‘ 𝐻 ) | |
| ghmqusnsg.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) | ||
| ghmqusnsg.k | ⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) | ||
| ghmqusnsg.q | ⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) | ||
| ghmqusnsg.j | ⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) | ||
| ghmqusnsg.n | ⊢ ( 𝜑 → 𝑁 ⊆ 𝐾 ) | ||
| ghmqusnsg.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) | ||
| ghmqusnsglem1.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐺 ) ) | ||
| Assertion | ghmqusnsglem1 | ⊢ ( 𝜑 → ( 𝐽 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmqusnsg.0 | ⊢ 0 = ( 0g ‘ 𝐻 ) | |
| 2 | ghmqusnsg.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) | |
| 3 | ghmqusnsg.k | ⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) | |
| 4 | ghmqusnsg.q | ⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) | |
| 5 | ghmqusnsg.j | ⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) | |
| 6 | ghmqusnsg.n | ⊢ ( 𝜑 → 𝑁 ⊆ 𝐾 ) | |
| 7 | ghmqusnsg.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) | |
| 8 | ghmqusnsglem1.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐺 ) ) | |
| 9 | imaeq2 | ⊢ ( 𝑞 = [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) → ( 𝐹 “ 𝑞 ) = ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ) | |
| 10 | 9 | unieqd | ⊢ ( 𝑞 = [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) → ∪ ( 𝐹 “ 𝑞 ) = ∪ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ) |
| 11 | ovex | ⊢ ( 𝐺 ~QG 𝑁 ) ∈ V | |
| 12 | 11 | ecelqsi | ⊢ ( 𝑋 ∈ ( Base ‘ 𝐺 ) → [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ) |
| 13 | 8 12 | syl | ⊢ ( 𝜑 → [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ) |
| 14 | 4 | a1i | ⊢ ( 𝜑 → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) ) |
| 15 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) | |
| 16 | ovexd | ⊢ ( 𝜑 → ( 𝐺 ~QG 𝑁 ) ∈ V ) | |
| 17 | ghmgrp1 | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ Grp ) | |
| 18 | 2 17 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 19 | 14 15 16 18 | qusbas | ⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) = ( Base ‘ 𝑄 ) ) |
| 20 | 13 19 | eleqtrd | ⊢ ( 𝜑 → [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ∈ ( Base ‘ 𝑄 ) ) |
| 21 | 2 | imaexd | ⊢ ( 𝜑 → ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ∈ V ) |
| 22 | 21 | uniexd | ⊢ ( 𝜑 → ∪ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ∈ V ) |
| 23 | 5 10 20 22 | fvmptd3 | ⊢ ( 𝜑 → ( 𝐽 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) = ∪ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ) |
| 24 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 25 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 26 | 24 25 | ghmf | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
| 27 | 2 26 | syl | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
| 28 | 27 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝐺 ) ) |
| 29 | nsgsubg | ⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 30 | eqid | ⊢ ( 𝐺 ~QG 𝑁 ) = ( 𝐺 ~QG 𝑁 ) | |
| 31 | 24 30 | eqger | ⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ) |
| 32 | 7 29 31 | 3syl | ⊢ ( 𝜑 → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ) |
| 33 | 32 | ecss | ⊢ ( 𝜑 → [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 34 | 28 33 | fvelimabd | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ↔ ∃ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) |
| 35 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) → ( 𝐹 ‘ 𝑧 ) = 𝑦 ) | |
| 36 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 37 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 38 | 36 17 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝐺 ∈ Grp ) |
| 39 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 40 | 24 37 38 39 | grpinvcld | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐺 ) ) |
| 41 | 33 | sselda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑧 ∈ ( Base ‘ 𝐺 ) ) |
| 42 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 43 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 44 | 24 42 43 | ghmlin | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 45 | 36 40 41 44 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 46 | 28 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝐹 Fn ( Base ‘ 𝐺 ) ) |
| 47 | 6 3 | sseqtrdi | ⊢ ( 𝜑 → 𝑁 ⊆ ( ◡ 𝐹 “ { 0 } ) ) |
| 48 | 47 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑁 ⊆ ( ◡ 𝐹 “ { 0 } ) ) |
| 49 | 24 | subgss | ⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝑁 ⊆ ( Base ‘ 𝐺 ) ) |
| 50 | 7 29 49 | 3syl | ⊢ ( 𝜑 → 𝑁 ⊆ ( Base ‘ 𝐺 ) ) |
| 51 | 50 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑁 ⊆ ( Base ‘ 𝐺 ) ) |
| 52 | vex | ⊢ 𝑧 ∈ V | |
| 53 | elecg | ⊢ ( ( 𝑧 ∈ V ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ↔ 𝑋 ( 𝐺 ~QG 𝑁 ) 𝑧 ) ) | |
| 54 | 52 53 | mpan | ⊢ ( 𝑋 ∈ ( Base ‘ 𝐺 ) → ( 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ↔ 𝑋 ( 𝐺 ~QG 𝑁 ) 𝑧 ) ) |
| 55 | 54 | biimpa | ⊢ ( ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑋 ( 𝐺 ~QG 𝑁 ) 𝑧 ) |
| 56 | 8 55 | sylan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑋 ( 𝐺 ~QG 𝑁 ) 𝑧 ) |
| 57 | 24 37 42 30 | eqgval | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑋 ( 𝐺 ~QG 𝑁 ) 𝑧 ↔ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑁 ) ) ) |
| 58 | 57 | biimpa | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ⊆ ( Base ‘ 𝐺 ) ) ∧ 𝑋 ( 𝐺 ~QG 𝑁 ) 𝑧 ) → ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑁 ) ) |
| 59 | 58 | simp3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ⊆ ( Base ‘ 𝐺 ) ) ∧ 𝑋 ( 𝐺 ~QG 𝑁 ) 𝑧 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑁 ) |
| 60 | 38 51 56 59 | syl21anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑁 ) |
| 61 | 48 60 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( ◡ 𝐹 “ { 0 } ) ) |
| 62 | fniniseg | ⊢ ( 𝐹 Fn ( Base ‘ 𝐺 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = 0 ) ) ) | |
| 63 | 62 | biimpa | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝐺 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( ◡ 𝐹 “ { 0 } ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = 0 ) ) |
| 64 | 46 61 63 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = 0 ) ) |
| 65 | 64 | simprd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = 0 ) |
| 66 | 45 65 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) = 0 ) |
| 67 | 66 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) 0 ) ) |
| 68 | eqid | ⊢ ( invg ‘ 𝐻 ) = ( invg ‘ 𝐻 ) | |
| 69 | 24 37 68 | ghminv | ⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| 70 | 36 39 69 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| 71 | 70 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 72 | 71 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 73 | ghmgrp2 | ⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐻 ∈ Grp ) | |
| 74 | 36 73 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝐻 ∈ Grp ) |
| 75 | 36 26 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
| 76 | 75 39 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ) |
| 77 | 75 41 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( Base ‘ 𝐻 ) ) |
| 78 | 25 43 68 | grpasscan1 | ⊢ ( ( 𝐻 ∈ Grp ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝐹 ‘ 𝑧 ) ) |
| 79 | 74 76 77 78 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝐹 ‘ 𝑧 ) ) |
| 80 | 72 79 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝐹 ‘ 𝑧 ) ) |
| 81 | 25 43 1 74 76 | grpridd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) 0 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 82 | 67 80 81 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 83 | 82 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 84 | 35 83 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) → 𝑦 = ( 𝐹 ‘ 𝑋 ) ) |
| 85 | 84 | r19.29an | ⊢ ( ( 𝜑 ∧ ∃ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 ) → 𝑦 = ( 𝐹 ‘ 𝑋 ) ) |
| 86 | fveqeq2 | ⊢ ( 𝑧 = 𝑋 → ( ( 𝐹 ‘ 𝑧 ) = 𝑦 ↔ ( 𝐹 ‘ 𝑋 ) = 𝑦 ) ) | |
| 87 | ecref | ⊢ ( ( ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → 𝑋 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) | |
| 88 | 32 8 87 | syl2anc | ⊢ ( 𝜑 → 𝑋 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) |
| 89 | 88 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑋 ) ) → 𝑋 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) |
| 90 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑋 ) ) → 𝑦 = ( 𝐹 ‘ 𝑋 ) ) | |
| 91 | 90 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑋 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑦 ) |
| 92 | 86 89 91 | rspcedvdw | ⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑋 ) ) → ∃ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 ) |
| 93 | 85 92 | impbida | ⊢ ( 𝜑 → ( ∃ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 ↔ 𝑦 = ( 𝐹 ‘ 𝑋 ) ) ) |
| 94 | velsn | ⊢ ( 𝑦 ∈ { ( 𝐹 ‘ 𝑋 ) } ↔ 𝑦 = ( 𝐹 ‘ 𝑋 ) ) | |
| 95 | 93 94 | bitr4di | ⊢ ( 𝜑 → ( ∃ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 ↔ 𝑦 ∈ { ( 𝐹 ‘ 𝑋 ) } ) ) |
| 96 | 34 95 | bitrd | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ↔ 𝑦 ∈ { ( 𝐹 ‘ 𝑋 ) } ) ) |
| 97 | 96 | eqrdv | ⊢ ( 𝜑 → ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) = { ( 𝐹 ‘ 𝑋 ) } ) |
| 98 | 97 | unieqd | ⊢ ( 𝜑 → ∪ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) = ∪ { ( 𝐹 ‘ 𝑋 ) } ) |
| 99 | fvex | ⊢ ( 𝐹 ‘ 𝑋 ) ∈ V | |
| 100 | 99 | unisn | ⊢ ∪ { ( 𝐹 ‘ 𝑋 ) } = ( 𝐹 ‘ 𝑋 ) |
| 101 | 98 100 | eqtrdi | ⊢ ( 𝜑 → ∪ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 102 | 23 101 | eqtrd | ⊢ ( 𝜑 → ( 𝐽 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹 ‘ 𝑋 ) ) |