This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inclusion functor from a full subcategory is a full and faithful functor, see also remark 4.4(2) in Adamek p. 49. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressffth.d | ⊢ 𝐷 = ( 𝐶 ↾s 𝑆 ) | |
| ressffth.i | ⊢ 𝐼 = ( idfunc ‘ 𝐷 ) | ||
| Assertion | ressffth | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 𝐼 ∈ ( ( 𝐷 Full 𝐶 ) ∩ ( 𝐷 Faith 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressffth.d | ⊢ 𝐷 = ( 𝐶 ↾s 𝑆 ) | |
| 2 | ressffth.i | ⊢ 𝐼 = ( idfunc ‘ 𝐷 ) | |
| 3 | relfunc | ⊢ Rel ( 𝐷 Func 𝐷 ) | |
| 4 | resscat | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐶 ↾s 𝑆 ) ∈ Cat ) | |
| 5 | 1 4 | eqeltrid | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 𝐷 ∈ Cat ) |
| 6 | 2 | idfucl | ⊢ ( 𝐷 ∈ Cat → 𝐼 ∈ ( 𝐷 Func 𝐷 ) ) |
| 7 | 5 6 | syl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 𝐼 ∈ ( 𝐷 Func 𝐷 ) ) |
| 8 | 1st2nd | ⊢ ( ( Rel ( 𝐷 Func 𝐷 ) ∧ 𝐼 ∈ ( 𝐷 Func 𝐷 ) ) → 𝐼 = 〈 ( 1st ‘ 𝐼 ) , ( 2nd ‘ 𝐼 ) 〉 ) | |
| 9 | 3 7 8 | sylancr | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 𝐼 = 〈 ( 1st ‘ 𝐼 ) , ( 2nd ‘ 𝐼 ) 〉 ) |
| 10 | eqidd | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐷 ) ) | |
| 11 | eqidd | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( compf ‘ 𝐷 ) = ( compf ‘ 𝐷 ) ) | |
| 12 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 13 | 12 | ressinbas | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 14 | 13 | adantl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 15 | 1 14 | eqtrid | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 𝐷 = ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 16 | 15 | fveq2d | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( Homf ‘ 𝐷 ) = ( Homf ‘ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) |
| 17 | eqid | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) | |
| 18 | simpl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 𝐶 ∈ Cat ) | |
| 19 | inss2 | ⊢ ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ ( Base ‘ 𝐶 ) | |
| 20 | 19 | a1i | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ ( Base ‘ 𝐶 ) ) |
| 21 | eqid | ⊢ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) = ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) | |
| 22 | eqid | ⊢ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) = ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) | |
| 23 | 12 17 18 20 21 22 | fullresc | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( ( Homf ‘ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) = ( Homf ‘ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ∧ ( compf ‘ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) = ( compf ‘ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ) ) |
| 24 | 23 | simpld | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( Homf ‘ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) = ( Homf ‘ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ) |
| 25 | 16 24 | eqtrd | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( Homf ‘ 𝐷 ) = ( Homf ‘ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ) |
| 26 | 15 | fveq2d | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( compf ‘ 𝐷 ) = ( compf ‘ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) |
| 27 | 23 | simprd | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( compf ‘ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) = ( compf ‘ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ) |
| 28 | 26 27 | eqtrd | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( compf ‘ 𝐷 ) = ( compf ‘ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ) |
| 29 | 1 | ovexi | ⊢ 𝐷 ∈ V |
| 30 | 29 | a1i | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 𝐷 ∈ V ) |
| 31 | ovexd | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ∈ V ) | |
| 32 | 10 11 25 28 30 30 30 31 | funcpropd | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐷 Func 𝐷 ) = ( 𝐷 Func ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ) |
| 33 | 12 17 18 20 | fullsubc | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ∈ ( Subcat ‘ 𝐶 ) ) |
| 34 | funcres2 | ⊢ ( ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ∈ ( Subcat ‘ 𝐶 ) → ( 𝐷 Func ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ⊆ ( 𝐷 Func 𝐶 ) ) | |
| 35 | 33 34 | syl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐷 Func ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ⊆ ( 𝐷 Func 𝐶 ) ) |
| 36 | 32 35 | eqsstrd | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐷 Func 𝐷 ) ⊆ ( 𝐷 Func 𝐶 ) ) |
| 37 | 36 7 | sseldd | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 𝐼 ∈ ( 𝐷 Func 𝐶 ) ) |
| 38 | 9 37 | eqeltrrd | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 〈 ( 1st ‘ 𝐼 ) , ( 2nd ‘ 𝐼 ) 〉 ∈ ( 𝐷 Func 𝐶 ) ) |
| 39 | df-br | ⊢ ( ( 1st ‘ 𝐼 ) ( 𝐷 Func 𝐶 ) ( 2nd ‘ 𝐼 ) ↔ 〈 ( 1st ‘ 𝐼 ) , ( 2nd ‘ 𝐼 ) 〉 ∈ ( 𝐷 Func 𝐶 ) ) | |
| 40 | 38 39 | sylibr | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 1st ‘ 𝐼 ) ( 𝐷 Func 𝐶 ) ( 2nd ‘ 𝐼 ) ) |
| 41 | f1oi | ⊢ ( I ↾ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1-onto→ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) | |
| 42 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 43 | 5 | adantr | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐷 ∈ Cat ) |
| 44 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 45 | simprl | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐷 ) ) | |
| 46 | simprr | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) | |
| 47 | 2 42 43 44 45 46 | idfu2nd | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) = ( I ↾ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) ) |
| 48 | eqidd | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) | |
| 49 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 50 | 1 49 | resshom | ⊢ ( 𝑆 ∈ 𝑉 → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐷 ) ) |
| 51 | 50 | ad2antlr | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐷 ) ) |
| 52 | 2 42 43 45 | idfu1 | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( 1st ‘ 𝐼 ) ‘ 𝑥 ) = 𝑥 ) |
| 53 | 2 42 43 46 | idfu1 | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( 1st ‘ 𝐼 ) ‘ 𝑦 ) = 𝑦 ) |
| 54 | 51 52 53 | oveq123d | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( ( 1st ‘ 𝐼 ) ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝐼 ) ‘ 𝑦 ) ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 55 | 47 48 54 | f1oeq123d | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1-onto→ ( ( ( 1st ‘ 𝐼 ) ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝐼 ) ‘ 𝑦 ) ) ↔ ( I ↾ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1-onto→ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) ) |
| 56 | 41 55 | mpbiri | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1-onto→ ( ( ( 1st ‘ 𝐼 ) ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝐼 ) ‘ 𝑦 ) ) ) |
| 57 | 56 | ralrimivva | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1-onto→ ( ( ( 1st ‘ 𝐼 ) ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝐼 ) ‘ 𝑦 ) ) ) |
| 58 | 42 44 49 | isffth2 | ⊢ ( ( 1st ‘ 𝐼 ) ( ( 𝐷 Full 𝐶 ) ∩ ( 𝐷 Faith 𝐶 ) ) ( 2nd ‘ 𝐼 ) ↔ ( ( 1st ‘ 𝐼 ) ( 𝐷 Func 𝐶 ) ( 2nd ‘ 𝐼 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐷 ) ∀ 𝑦 ∈ ( Base ‘ 𝐷 ) ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) –1-1-onto→ ( ( ( 1st ‘ 𝐼 ) ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( ( 1st ‘ 𝐼 ) ‘ 𝑦 ) ) ) ) |
| 59 | 40 57 58 | sylanbrc | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 1st ‘ 𝐼 ) ( ( 𝐷 Full 𝐶 ) ∩ ( 𝐷 Faith 𝐶 ) ) ( 2nd ‘ 𝐼 ) ) |
| 60 | df-br | ⊢ ( ( 1st ‘ 𝐼 ) ( ( 𝐷 Full 𝐶 ) ∩ ( 𝐷 Faith 𝐶 ) ) ( 2nd ‘ 𝐼 ) ↔ 〈 ( 1st ‘ 𝐼 ) , ( 2nd ‘ 𝐼 ) 〉 ∈ ( ( 𝐷 Full 𝐶 ) ∩ ( 𝐷 Faith 𝐶 ) ) ) | |
| 61 | 59 60 | sylib | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 〈 ( 1st ‘ 𝐼 ) , ( 2nd ‘ 𝐼 ) 〉 ∈ ( ( 𝐷 Full 𝐶 ) ∩ ( 𝐷 Faith 𝐶 ) ) ) |
| 62 | 9 61 | eqeltrd | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 𝐼 ∈ ( ( 𝐷 Full 𝐶 ) ∩ ( 𝐷 Faith 𝐶 ) ) ) |