This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same functors. (Contributed by Mario Carneiro, 17-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcpropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) | |
| funcpropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) | ||
| funcpropd.3 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | ||
| funcpropd.4 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | ||
| funcpropd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| funcpropd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| funcpropd.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| funcpropd.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
| Assertion | funcpropd | ⊢ ( 𝜑 → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcpropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) | |
| 2 | funcpropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) | |
| 3 | funcpropd.3 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| 4 | funcpropd.4 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | |
| 5 | funcpropd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | funcpropd.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 7 | funcpropd.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 8 | funcpropd.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 9 | relfunc | ⊢ Rel ( 𝐴 Func 𝐶 ) | |
| 10 | relfunc | ⊢ Rel ( 𝐵 Func 𝐷 ) | |
| 11 | 1 2 5 6 | catpropd | ⊢ ( 𝜑 → ( 𝐴 ∈ Cat ↔ 𝐵 ∈ Cat ) ) |
| 12 | 3 4 7 8 | catpropd | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ↔ 𝐷 ∈ Cat ) ) |
| 13 | 11 12 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) ↔ ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) ) ) |
| 14 | 2fveq3 | ⊢ ( 𝑧 = 𝑤 → ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) = ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ) | |
| 15 | 2fveq3 | ⊢ ( 𝑧 = 𝑤 → ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) = ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) | |
| 16 | 14 15 | oveq12d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ) |
| 17 | fveq2 | ⊢ ( 𝑧 = 𝑤 → ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) | |
| 18 | 16 17 | oveq12d | ⊢ ( 𝑧 = 𝑤 → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) = ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) |
| 19 | 18 | cbvixpv | ⊢ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) = X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) |
| 20 | 19 | eleq2i | ⊢ ( 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ↔ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) |
| 21 | 20 | anbi2i | ⊢ ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) |
| 22 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
| 23 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) |
| 24 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝐴 ∈ 𝑉 ) |
| 25 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝐵 ∈ 𝑉 ) |
| 26 | 22 23 24 25 | cidpropd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Id ‘ 𝐴 ) = ( Id ‘ 𝐵 ) ) |
| 27 | 26 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) = ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) |
| 28 | 27 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) ) |
| 29 | 3 4 7 8 | cidpropd | ⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( Id ‘ 𝐷 ) ) |
| 30 | 29 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Id ‘ 𝐶 ) = ( Id ‘ 𝐷 ) ) |
| 31 | 30 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 32 | 28 31 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ↔ ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 33 | eqid | ⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) | |
| 34 | eqid | ⊢ ( Hom ‘ 𝐴 ) = ( Hom ‘ 𝐴 ) | |
| 35 | eqid | ⊢ ( comp ‘ 𝐴 ) = ( comp ‘ 𝐴 ) | |
| 36 | eqid | ⊢ ( comp ‘ 𝐵 ) = ( comp ‘ 𝐵 ) | |
| 37 | 1 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
| 38 | 2 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) |
| 39 | simp-5r | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) | |
| 40 | simp-4r | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) | |
| 41 | simpllr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → 𝑧 ∈ ( Base ‘ 𝐴 ) ) | |
| 42 | simplr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) | |
| 43 | simpr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) | |
| 44 | 33 34 35 36 37 38 39 40 41 42 43 | comfeqval | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) = ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) |
| 45 | 44 | fveq2d | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) ) |
| 46 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 47 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 48 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 49 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 50 | 3 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 51 | 4 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 52 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) → 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) | |
| 53 | 52 | ad5antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) |
| 54 | 53 39 | ffvelcdmd | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( 𝑓 ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) ) |
| 55 | 53 40 | ffvelcdmd | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) |
| 56 | 53 41 | ffvelcdmd | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( 𝑓 ‘ 𝑧 ) ∈ ( Base ‘ 𝐶 ) ) |
| 57 | df-ov | ⊢ ( 𝑥 𝑔 𝑦 ) = ( 𝑔 ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 58 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) → 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) | |
| 59 | 58 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) |
| 60 | 59 | adantr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) |
| 61 | opelxpi | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐴 ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) | |
| 62 | 61 | ad5ant23 | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) |
| 63 | vex | ⊢ 𝑥 ∈ V | |
| 64 | vex | ⊢ 𝑦 ∈ V | |
| 65 | 63 64 | op1std | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑤 ) = 𝑥 ) |
| 66 | 65 | fveq2d | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) = ( 𝑓 ‘ 𝑥 ) ) |
| 67 | 63 64 | op2ndd | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑤 ) = 𝑦 ) |
| 68 | 67 | fveq2d | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) = ( 𝑓 ‘ 𝑦 ) ) |
| 69 | 66 68 | oveq12d | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 70 | fveq2 | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) = ( ( Hom ‘ 𝐴 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) | |
| 71 | df-ov | ⊢ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( ( Hom ‘ 𝐴 ) ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 72 | 70 71 | eqtr4di | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) = ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) |
| 73 | 69 72 | oveq12d | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) = ( ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ↑m ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ) |
| 74 | 73 | fvixp | ⊢ ( ( 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ∧ 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( 𝑔 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ↑m ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ) |
| 75 | 60 62 74 | syl2anc | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑔 ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ↑m ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ) |
| 76 | 57 75 | eqeltrid | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑥 𝑔 𝑦 ) ∈ ( ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ↑m ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ) |
| 77 | elmapi | ⊢ ( ( 𝑥 𝑔 𝑦 ) ∈ ( ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ↑m ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑥 𝑔 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ⟶ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ) | |
| 78 | 76 77 | syl | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑥 𝑔 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ⟶ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 79 | 78 | adantr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( 𝑥 𝑔 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ⟶ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 80 | 79 42 | ffvelcdmd | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ∈ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 81 | df-ov | ⊢ ( 𝑦 𝑔 𝑧 ) = ( 𝑔 ‘ 〈 𝑦 , 𝑧 〉 ) | |
| 82 | opelxpi | ⊢ ( ( 𝑦 ∈ ( Base ‘ 𝐴 ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 〈 𝑦 , 𝑧 〉 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) | |
| 83 | 82 | adantll | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 〈 𝑦 , 𝑧 〉 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) |
| 84 | vex | ⊢ 𝑧 ∈ V | |
| 85 | 64 84 | op1std | ⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( 1st ‘ 𝑤 ) = 𝑦 ) |
| 86 | 85 | fveq2d | ⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) = ( 𝑓 ‘ 𝑦 ) ) |
| 87 | 64 84 | op2ndd | ⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( 2nd ‘ 𝑤 ) = 𝑧 ) |
| 88 | 87 | fveq2d | ⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) = ( 𝑓 ‘ 𝑧 ) ) |
| 89 | 86 88 | oveq12d | ⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) = ( ( 𝑓 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ) |
| 90 | fveq2 | ⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) = ( ( Hom ‘ 𝐴 ) ‘ 〈 𝑦 , 𝑧 〉 ) ) | |
| 91 | df-ov | ⊢ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) = ( ( Hom ‘ 𝐴 ) ‘ 〈 𝑦 , 𝑧 〉 ) | |
| 92 | 90 91 | eqtr4di | ⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) = ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) |
| 93 | 89 92 | oveq12d | ⊢ ( 𝑤 = 〈 𝑦 , 𝑧 〉 → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) = ( ( ( 𝑓 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ↑m ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) |
| 94 | 93 | fvixp | ⊢ ( ( 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ∧ 〈 𝑦 , 𝑧 〉 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( 𝑔 ‘ 〈 𝑦 , 𝑧 〉 ) ∈ ( ( ( 𝑓 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ↑m ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) |
| 95 | 59 83 94 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑔 ‘ 〈 𝑦 , 𝑧 〉 ) ∈ ( ( ( 𝑓 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ↑m ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) |
| 96 | 81 95 | eqeltrid | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑦 𝑔 𝑧 ) ∈ ( ( ( 𝑓 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ↑m ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) ) |
| 97 | elmapi | ⊢ ( ( 𝑦 𝑔 𝑧 ) ∈ ( ( ( 𝑓 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ↑m ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( 𝑦 𝑔 𝑧 ) : ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ⟶ ( ( 𝑓 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ) | |
| 98 | 96 97 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑦 𝑔 𝑧 ) : ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ⟶ ( ( 𝑓 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ) |
| 99 | 98 | adantr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑦 𝑔 𝑧 ) : ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ⟶ ( ( 𝑓 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ) |
| 100 | 99 | ffvelcdmda | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ∈ ( ( 𝑓 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ) |
| 101 | 46 47 48 49 50 51 54 55 56 80 100 | comfeqval | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) |
| 102 | 45 101 | eqeq12d | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) ∧ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ) → ( ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 103 | 102 | ralbidva | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 104 | 103 | ralbidva | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 105 | eqid | ⊢ ( Hom ‘ 𝐵 ) = ( Hom ‘ 𝐵 ) | |
| 106 | 22 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
| 107 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) | |
| 108 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) | |
| 109 | 33 34 105 106 107 108 | homfeqval | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ) |
| 110 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → 𝑧 ∈ ( Base ‘ 𝐴 ) ) | |
| 111 | 33 34 105 106 108 110 | homfeqval | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) = ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ) |
| 112 | 111 | raleqdv | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 113 | 109 112 | raleqbidv | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 114 | 104 113 | bitrd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑧 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 115 | 114 | ralbidva | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 116 | 115 | ralbidva | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 117 | 32 116 | anbi12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
| 118 | 117 | ralbidva | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑤 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑤 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑤 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑤 ) ) ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
| 119 | 21 118 | sylan2b | ⊢ ( ( 𝜑 ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
| 120 | 119 | pm5.32da | ⊢ ( 𝜑 → ( ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
| 121 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 122 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 123 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) | |
| 124 | xp1st | ⊢ ( 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) → ( 1st ‘ 𝑧 ) ∈ ( Base ‘ 𝐴 ) ) | |
| 125 | 124 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( 1st ‘ 𝑧 ) ∈ ( Base ‘ 𝐴 ) ) |
| 126 | 123 125 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ∈ ( Base ‘ 𝐶 ) ) |
| 127 | xp2nd | ⊢ ( 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) → ( 2nd ‘ 𝑧 ) ∈ ( Base ‘ 𝐴 ) ) | |
| 128 | 127 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( 2nd ‘ 𝑧 ) ∈ ( Base ‘ 𝐴 ) ) |
| 129 | 123 128 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ∈ ( Base ‘ 𝐶 ) ) |
| 130 | 46 47 121 122 126 129 | homfeqval | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ) |
| 131 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
| 132 | 33 34 105 131 125 128 | homfeqval | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( ( 1st ‘ 𝑧 ) ( Hom ‘ 𝐴 ) ( 2nd ‘ 𝑧 ) ) = ( ( 1st ‘ 𝑧 ) ( Hom ‘ 𝐵 ) ( 2nd ‘ 𝑧 ) ) ) |
| 133 | df-ov | ⊢ ( ( 1st ‘ 𝑧 ) ( Hom ‘ 𝐴 ) ( 2nd ‘ 𝑧 ) ) = ( ( Hom ‘ 𝐴 ) ‘ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) | |
| 134 | df-ov | ⊢ ( ( 1st ‘ 𝑧 ) ( Hom ‘ 𝐵 ) ( 2nd ‘ 𝑧 ) ) = ( ( Hom ‘ 𝐵 ) ‘ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) | |
| 135 | 132 133 134 | 3eqtr3g | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( ( Hom ‘ 𝐴 ) ‘ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) = ( ( Hom ‘ 𝐵 ) ‘ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
| 136 | 1st2nd2 | ⊢ ( 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) | |
| 137 | 136 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
| 138 | 137 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝐴 ) ‘ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
| 139 | 137 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝐵 ) ‘ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
| 140 | 135 138 139 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) |
| 141 | 130 140 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) ∧ 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) = ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) |
| 142 | 141 | ixpeq2dva | ⊢ ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) → X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) = X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) |
| 143 | 1 | homfeqbas | ⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 144 | 143 | sqxpeqd | ⊢ ( 𝜑 → ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) = ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ) |
| 145 | 144 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) → ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) = ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ) |
| 146 | 145 | ixpeq1d | ⊢ ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) → X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) = X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) |
| 147 | 142 146 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) → X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) = X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) |
| 148 | 147 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) → ( 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ↔ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ) |
| 149 | 148 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ) ) |
| 150 | 3 | homfeqbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐷 ) ) |
| 151 | 143 150 | feq23d | ⊢ ( 𝜑 → ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ↔ 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ) ) |
| 152 | 151 | anbi1d | ⊢ ( 𝜑 → ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ) ) |
| 153 | 149 152 | bitrd | ⊢ ( 𝜑 → ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ) ) |
| 154 | 143 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 155 | 154 | raleqdv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 156 | 154 155 | raleqbidv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) |
| 157 | 156 | anbi2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
| 158 | 143 157 | raleqbidva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) |
| 159 | 153 158 | anbi12d | ⊢ ( 𝜑 → ( ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
| 160 | 120 159 | bitrd | ⊢ ( 𝜑 → ( ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
| 161 | df-3an | ⊢ ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) | |
| 162 | df-3an | ⊢ ( ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) | |
| 163 | 160 161 162 | 3bitr4g | ⊢ ( 𝜑 → ( ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ↔ ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
| 164 | 13 163 | anbi12d | ⊢ ( 𝜑 → ( ( ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ↔ ( ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) ∧ ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) ) |
| 165 | df-br | ⊢ ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ↔ 〈 𝑓 , 𝑔 〉 ∈ ( 𝐴 Func 𝐶 ) ) | |
| 166 | funcrcl | ⊢ ( 〈 𝑓 , 𝑔 〉 ∈ ( 𝐴 Func 𝐶 ) → ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) ) | |
| 167 | 165 166 | sylbi | ⊢ ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 → ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) ) |
| 168 | eqid | ⊢ ( Id ‘ 𝐴 ) = ( Id ‘ 𝐴 ) | |
| 169 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 170 | simpl | ⊢ ( ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) → 𝐴 ∈ Cat ) | |
| 171 | simpr | ⊢ ( ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) → 𝐶 ∈ Cat ) | |
| 172 | 33 46 34 47 168 169 35 48 170 171 | isfunc | ⊢ ( ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) → ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ↔ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
| 173 | 167 172 | biadanii | ⊢ ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ↔ ( ( 𝐴 ∈ Cat ∧ 𝐶 ∈ Cat ) ∧ ( 𝑓 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐴 ) × ( Base ‘ 𝐴 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐴 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐴 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ 𝑧 ∈ ( Base ‘ 𝐴 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐴 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐴 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
| 174 | df-br | ⊢ ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ↔ 〈 𝑓 , 𝑔 〉 ∈ ( 𝐵 Func 𝐷 ) ) | |
| 175 | funcrcl | ⊢ ( 〈 𝑓 , 𝑔 〉 ∈ ( 𝐵 Func 𝐷 ) → ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) ) | |
| 176 | 174 175 | sylbi | ⊢ ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 → ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
| 177 | eqid | ⊢ ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 ) | |
| 178 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 179 | eqid | ⊢ ( Id ‘ 𝐵 ) = ( Id ‘ 𝐵 ) | |
| 180 | eqid | ⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) | |
| 181 | simpl | ⊢ ( ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) → 𝐵 ∈ Cat ) | |
| 182 | simpr | ⊢ ( ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) → 𝐷 ∈ Cat ) | |
| 183 | 177 178 105 121 179 180 36 49 181 182 | isfunc | ⊢ ( ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ↔ ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
| 184 | 176 183 | biadanii | ⊢ ( 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ↔ ( ( 𝐵 ∈ Cat ∧ 𝐷 ∈ Cat ) ∧ ( 𝑓 : ( Base ‘ 𝐵 ) ⟶ ( Base ‘ 𝐷 ) ∧ 𝑔 ∈ X 𝑧 ∈ ( ( Base ‘ 𝐵 ) × ( Base ‘ 𝐵 ) ) ( ( ( 𝑓 ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐷 ) ( 𝑓 ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐵 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( ( 𝑥 𝑔 𝑥 ) ‘ ( ( Id ‘ 𝐵 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ 𝑧 ∈ ( Base ‘ 𝐵 ) ∀ 𝑚 ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ∀ 𝑛 ∈ ( 𝑦 ( Hom ‘ 𝐵 ) 𝑧 ) ( ( 𝑥 𝑔 𝑧 ) ‘ ( 𝑛 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐵 ) 𝑧 ) 𝑚 ) ) = ( ( ( 𝑦 𝑔 𝑧 ) ‘ 𝑛 ) ( 〈 ( 𝑓 ‘ 𝑥 ) , ( 𝑓 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑓 ‘ 𝑧 ) ) ( ( 𝑥 𝑔 𝑦 ) ‘ 𝑚 ) ) ) ) ) ) |
| 185 | 164 173 184 | 3bitr4g | ⊢ ( 𝜑 → ( 𝑓 ( 𝐴 Func 𝐶 ) 𝑔 ↔ 𝑓 ( 𝐵 Func 𝐷 ) 𝑔 ) ) |
| 186 | 9 10 185 | eqbrrdiv | ⊢ ( 𝜑 → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) ) |