This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity functor is a functor. Example 3.20(1) of Adamek p. 30. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | idfucl.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
| Assertion | idfucl | ⊢ ( 𝐶 ∈ Cat → 𝐼 ∈ ( 𝐶 Func 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfucl.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 3 | id | ⊢ ( 𝐶 ∈ Cat → 𝐶 ∈ Cat ) | |
| 4 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 5 | 1 2 3 4 | idfuval | ⊢ ( 𝐶 ∈ Cat → 𝐼 = 〈 ( I ↾ ( Base ‘ 𝐶 ) ) , ( 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) 〉 ) |
| 6 | 5 | fveq2d | ⊢ ( 𝐶 ∈ Cat → ( 2nd ‘ 𝐼 ) = ( 2nd ‘ 〈 ( I ↾ ( Base ‘ 𝐶 ) ) , ( 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) 〉 ) ) |
| 7 | fvex | ⊢ ( Base ‘ 𝐶 ) ∈ V | |
| 8 | resiexg | ⊢ ( ( Base ‘ 𝐶 ) ∈ V → ( I ↾ ( Base ‘ 𝐶 ) ) ∈ V ) | |
| 9 | 7 8 | ax-mp | ⊢ ( I ↾ ( Base ‘ 𝐶 ) ) ∈ V |
| 10 | 7 7 | xpex | ⊢ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∈ V |
| 11 | 10 | mptex | ⊢ ( 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) ∈ V |
| 12 | 9 11 | op2nd | ⊢ ( 2nd ‘ 〈 ( I ↾ ( Base ‘ 𝐶 ) ) , ( 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) 〉 ) = ( 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) |
| 13 | 6 12 | eqtrdi | ⊢ ( 𝐶 ∈ Cat → ( 2nd ‘ 𝐼 ) = ( 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) ) |
| 14 | 13 | opeq2d | ⊢ ( 𝐶 ∈ Cat → 〈 ( I ↾ ( Base ‘ 𝐶 ) ) , ( 2nd ‘ 𝐼 ) 〉 = 〈 ( I ↾ ( Base ‘ 𝐶 ) ) , ( 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) 〉 ) |
| 15 | 5 14 | eqtr4d | ⊢ ( 𝐶 ∈ Cat → 𝐼 = 〈 ( I ↾ ( Base ‘ 𝐶 ) ) , ( 2nd ‘ 𝐼 ) 〉 ) |
| 16 | f1oi | ⊢ ( I ↾ ( Base ‘ 𝐶 ) ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( Base ‘ 𝐶 ) | |
| 17 | f1of | ⊢ ( ( I ↾ ( Base ‘ 𝐶 ) ) : ( Base ‘ 𝐶 ) –1-1-onto→ ( Base ‘ 𝐶 ) → ( I ↾ ( Base ‘ 𝐶 ) ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐶 ) ) | |
| 18 | 16 17 | mp1i | ⊢ ( 𝐶 ∈ Cat → ( I ↾ ( Base ‘ 𝐶 ) ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐶 ) ) |
| 19 | f1oi | ⊢ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) : ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) –1-1-onto→ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) | |
| 20 | f1of | ⊢ ( ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) : ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) –1-1-onto→ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) → ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) : ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ⟶ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) | |
| 21 | 19 20 | ax-mp | ⊢ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) : ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ⟶ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) |
| 22 | fvex | ⊢ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ∈ V | |
| 23 | 22 22 | elmap | ⊢ ( ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ∈ ( ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ↑m ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ↔ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) : ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ⟶ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) |
| 24 | 21 23 | mpbir | ⊢ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ∈ ( ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ↑m ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) |
| 25 | xp1st | ⊢ ( 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → ( 1st ‘ 𝑧 ) ∈ ( Base ‘ 𝐶 ) ) | |
| 26 | 25 | adantl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( 1st ‘ 𝑧 ) ∈ ( Base ‘ 𝐶 ) ) |
| 27 | fvresi | ⊢ ( ( 1st ‘ 𝑧 ) ∈ ( Base ‘ 𝐶 ) → ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 1st ‘ 𝑧 ) ) = ( 1st ‘ 𝑧 ) ) | |
| 28 | 26 27 | syl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 1st ‘ 𝑧 ) ) = ( 1st ‘ 𝑧 ) ) |
| 29 | xp2nd | ⊢ ( 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → ( 2nd ‘ 𝑧 ) ∈ ( Base ‘ 𝐶 ) ) | |
| 30 | 29 | adantl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( 2nd ‘ 𝑧 ) ∈ ( Base ‘ 𝐶 ) ) |
| 31 | fvresi | ⊢ ( ( 2nd ‘ 𝑧 ) ∈ ( Base ‘ 𝐶 ) → ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 2nd ‘ 𝑧 ) ) = ( 2nd ‘ 𝑧 ) ) | |
| 32 | 30 31 | syl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 2nd ‘ 𝑧 ) ) = ( 2nd ‘ 𝑧 ) ) |
| 33 | 28 32 | oveq12d | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( 1st ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 2nd ‘ 𝑧 ) ) ) |
| 34 | df-ov | ⊢ ( ( 1st ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 2nd ‘ 𝑧 ) ) = ( ( Hom ‘ 𝐶 ) ‘ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) | |
| 35 | 33 34 | eqtrdi | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( Hom ‘ 𝐶 ) ‘ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
| 36 | 1st2nd2 | ⊢ ( 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) | |
| 37 | 36 | adantl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
| 38 | 37 | fveq2d | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) = ( ( Hom ‘ 𝐶 ) ‘ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
| 39 | 35 38 | eqtr4d | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) = ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) |
| 40 | 39 | oveq1d | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( ( ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) = ( ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ↑m ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) |
| 41 | 24 40 | eleqtrrid | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) → ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ∈ ( ( ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) |
| 42 | 41 | ralrimiva | ⊢ ( 𝐶 ∈ Cat → ∀ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ∈ ( ( ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) |
| 43 | mptelixpg | ⊢ ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ∈ V → ( ( 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) ∈ X 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ( ( ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ∈ ( ( ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) ) | |
| 44 | 10 43 | ax-mp | ⊢ ( ( 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) ∈ X 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ( ( ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ∈ ( ( ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) |
| 45 | 42 44 | sylibr | ⊢ ( 𝐶 ∈ Cat → ( 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↦ ( I ↾ ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) ∈ X 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ( ( ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) |
| 46 | 13 45 | eqeltrd | ⊢ ( 𝐶 ∈ Cat → ( 2nd ‘ 𝐼 ) ∈ X 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ( ( ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ) |
| 47 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 48 | simpl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) | |
| 49 | simpr | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 50 | 2 4 47 48 49 | catidcl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 51 | fvresi | ⊢ ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) → ( ( I ↾ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) | |
| 52 | 50 51 | syl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( I ↾ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) |
| 53 | 1 2 48 4 49 49 | idfu2nd | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑥 ) = ( I ↾ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ) |
| 54 | 53 | fveq1d | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( I ↾ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) ) |
| 55 | fvresi | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) → ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑥 ) = 𝑥 ) | |
| 56 | 55 | adantl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑥 ) = 𝑥 ) |
| 57 | 56 | fveq2d | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) |
| 58 | 52 54 57 | 3eqtr4d | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑥 ) ) ) |
| 59 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 60 | 48 | ad2antrr | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝐶 ∈ Cat ) |
| 61 | 49 | ad2antrr | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 62 | simplrl | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 63 | simplrr | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) | |
| 64 | simprl | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) | |
| 65 | simprr | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) | |
| 66 | 2 4 59 60 61 62 63 64 65 | catcocl | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 67 | fvresi | ⊢ ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) → ( ( I ↾ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) | |
| 68 | 66 67 | syl | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( I ↾ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) |
| 69 | 1 2 60 4 61 63 | idfu2nd | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑧 ) = ( I ↾ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) |
| 70 | 69 | fveq1d | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( I ↾ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) ) |
| 71 | 61 55 | syl | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑥 ) = 𝑥 ) |
| 72 | fvresi | ⊢ ( 𝑦 ∈ ( Base ‘ 𝐶 ) → ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑦 ) = 𝑦 ) | |
| 73 | 62 72 | syl | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑦 ) = 𝑦 ) |
| 74 | 71 73 | opeq12d | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 〈 ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑥 ) , ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑦 ) 〉 = 〈 𝑥 , 𝑦 〉 ) |
| 75 | fvresi | ⊢ ( 𝑧 ∈ ( Base ‘ 𝐶 ) → ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑧 ) = 𝑧 ) | |
| 76 | 63 75 | syl | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑧 ) = 𝑧 ) |
| 77 | 74 76 | oveq12d | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 〈 ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑥 ) , ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑧 ) ) = ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ) |
| 78 | 1 2 60 4 62 63 65 | idfu2 | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑦 ( 2nd ‘ 𝐼 ) 𝑧 ) ‘ 𝑔 ) = 𝑔 ) |
| 79 | 1 2 60 4 61 62 64 | idfu2 | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) ‘ 𝑓 ) = 𝑓 ) |
| 80 | 77 78 79 | oveq123d | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( 𝑦 ( 2nd ‘ 𝐼 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑥 ) , ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) ‘ 𝑓 ) ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) |
| 81 | 68 70 80 | 3eqtr4d | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd ‘ 𝐼 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑥 ) , ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) ‘ 𝑓 ) ) ) |
| 82 | 81 | ralrimivva | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd ‘ 𝐼 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑥 ) , ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) ‘ 𝑓 ) ) ) |
| 83 | 82 | ralrimivva | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd ‘ 𝐼 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑥 ) , ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) ‘ 𝑓 ) ) ) |
| 84 | 58 83 | jca | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd ‘ 𝐼 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑥 ) , ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) ‘ 𝑓 ) ) ) ) |
| 85 | 84 | ralrimiva | ⊢ ( 𝐶 ∈ Cat → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd ‘ 𝐼 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑥 ) , ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) ‘ 𝑓 ) ) ) ) |
| 86 | 2 2 4 4 47 47 59 59 3 3 | isfunc | ⊢ ( 𝐶 ∈ Cat → ( ( I ↾ ( Base ‘ 𝐶 ) ) ( 𝐶 Func 𝐶 ) ( 2nd ‘ 𝐼 ) ↔ ( ( I ↾ ( Base ‘ 𝐶 ) ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐶 ) ∧ ( 2nd ‘ 𝐼 ) ∈ X 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ( ( ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 1st ‘ 𝑧 ) ) ( Hom ‘ 𝐶 ) ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ ( 2nd ‘ 𝑧 ) ) ) ↑m ( ( Hom ‘ 𝐶 ) ‘ 𝑧 ) ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐶 ) ‘ ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd ‘ 𝐼 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑥 ) , ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( ( I ↾ ( Base ‘ 𝐶 ) ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐼 ) 𝑦 ) ‘ 𝑓 ) ) ) ) ) ) |
| 87 | 18 46 85 86 | mpbir3and | ⊢ ( 𝐶 ∈ Cat → ( I ↾ ( Base ‘ 𝐶 ) ) ( 𝐶 Func 𝐶 ) ( 2nd ‘ 𝐼 ) ) |
| 88 | df-br | ⊢ ( ( I ↾ ( Base ‘ 𝐶 ) ) ( 𝐶 Func 𝐶 ) ( 2nd ‘ 𝐼 ) ↔ 〈 ( I ↾ ( Base ‘ 𝐶 ) ) , ( 2nd ‘ 𝐼 ) 〉 ∈ ( 𝐶 Func 𝐶 ) ) | |
| 89 | 87 88 | sylib | ⊢ ( 𝐶 ∈ Cat → 〈 ( I ↾ ( Base ‘ 𝐶 ) ) , ( 2nd ‘ 𝐼 ) 〉 ∈ ( 𝐶 Func 𝐶 ) ) |
| 90 | 15 89 | eqeltrd | ⊢ ( 𝐶 ∈ Cat → 𝐼 ∈ ( 𝐶 Func 𝐶 ) ) |