This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idfuval.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
| idfuval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| idfuval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| idfuval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| idfu2nd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| idfu2nd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | idfu2nd | ⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝐼 ) 𝑌 ) = ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfuval.i | ⊢ 𝐼 = ( idfunc ‘ 𝐶 ) | |
| 2 | idfuval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | idfuval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | idfuval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 5 | idfu2nd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | idfu2nd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | df-ov | ⊢ ( 𝑋 ( 2nd ‘ 𝐼 ) 𝑌 ) = ( ( 2nd ‘ 𝐼 ) ‘ 〈 𝑋 , 𝑌 〉 ) | |
| 8 | 1 2 3 4 | idfuval | ⊢ ( 𝜑 → 𝐼 = 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) |
| 9 | 8 | fveq2d | ⊢ ( 𝜑 → ( 2nd ‘ 𝐼 ) = ( 2nd ‘ 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) ) |
| 10 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 11 | resiexg | ⊢ ( 𝐵 ∈ V → ( I ↾ 𝐵 ) ∈ V ) | |
| 12 | 10 11 | ax-mp | ⊢ ( I ↾ 𝐵 ) ∈ V |
| 13 | 10 10 | xpex | ⊢ ( 𝐵 × 𝐵 ) ∈ V |
| 14 | 13 | mptex | ⊢ ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) ∈ V |
| 15 | 12 14 | op2nd | ⊢ ( 2nd ‘ 〈 ( I ↾ 𝐵 ) , ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) 〉 ) = ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) |
| 16 | 9 15 | eqtrdi | ⊢ ( 𝜑 → ( 2nd ‘ 𝐼 ) = ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( I ↾ ( 𝐻 ‘ 𝑧 ) ) ) ) |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 = 〈 𝑋 , 𝑌 〉 ) → 𝑧 = 〈 𝑋 , 𝑌 〉 ) | |
| 18 | 17 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑧 = 〈 𝑋 , 𝑌 〉 ) → ( 𝐻 ‘ 𝑧 ) = ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 19 | df-ov | ⊢ ( 𝑋 𝐻 𝑌 ) = ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) | |
| 20 | 18 19 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑧 = 〈 𝑋 , 𝑌 〉 ) → ( 𝐻 ‘ 𝑧 ) = ( 𝑋 𝐻 𝑌 ) ) |
| 21 | 20 | reseq2d | ⊢ ( ( 𝜑 ∧ 𝑧 = 〈 𝑋 , 𝑌 〉 ) → ( I ↾ ( 𝐻 ‘ 𝑧 ) ) = ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ) |
| 22 | 5 6 | opelxpd | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 23 | ovex | ⊢ ( 𝑋 𝐻 𝑌 ) ∈ V | |
| 24 | resiexg | ⊢ ( ( 𝑋 𝐻 𝑌 ) ∈ V → ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ∈ V ) | |
| 25 | 23 24 | mp1i | ⊢ ( 𝜑 → ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ∈ V ) |
| 26 | 16 21 22 25 | fvmptd | ⊢ ( 𝜑 → ( ( 2nd ‘ 𝐼 ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ) |
| 27 | 7 26 | eqtrid | ⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝐼 ) 𝑌 ) = ( I ↾ ( 𝑋 𝐻 𝑌 ) ) ) |