This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A category restricted to a smaller set of objects is a category. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resscat | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐶 ↾s 𝑆 ) ∈ Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 2 | 1 | ressinbas | ⊢ ( 𝑆 ∈ 𝑉 → ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 3 | 2 | adantl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐶 ↾s 𝑆 ) = ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) |
| 4 | eqid | ⊢ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) = ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) | |
| 5 | eqid | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) | |
| 6 | simpl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → 𝐶 ∈ Cat ) | |
| 7 | inss2 | ⊢ ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ ( Base ‘ 𝐶 ) | |
| 8 | 7 | a1i | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ⊆ ( Base ‘ 𝐶 ) ) |
| 9 | 1 5 6 8 | fullsubc | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ∈ ( Subcat ‘ 𝐶 ) ) |
| 10 | 4 9 | subccat | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ∈ Cat ) |
| 11 | eqid | ⊢ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) = ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) | |
| 12 | 1 5 6 8 11 4 | fullresc | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( ( Homf ‘ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) = ( Homf ‘ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ∧ ( compf ‘ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) = ( compf ‘ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ) ) |
| 13 | 12 | simpld | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( Homf ‘ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) = ( Homf ‘ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ) |
| 14 | 12 | simprd | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( compf ‘ ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) = ( compf ‘ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ) ) |
| 15 | ovexd | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ∈ V ) | |
| 16 | 13 14 15 10 | catpropd | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ∈ Cat ↔ ( 𝐶 ↾cat ( ( Homf ‘ 𝐶 ) ↾ ( ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) × ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ) ) ∈ Cat ) ) |
| 17 | 10 16 | mpbird | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐶 ↾s ( 𝑆 ∩ ( Base ‘ 𝐶 ) ) ) ∈ Cat ) |
| 18 | 3 17 | eqeltrd | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑆 ∈ 𝑉 ) → ( 𝐶 ↾s 𝑆 ) ∈ Cat ) |