This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inclusion functor from a full subcategory is a full and faithful functor, see also remark 4.4(2) in Adamek p. 49. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressffth.d | |- D = ( C |`s S ) |
|
| ressffth.i | |- I = ( idFunc ` D ) |
||
| Assertion | ressffth | |- ( ( C e. Cat /\ S e. V ) -> I e. ( ( D Full C ) i^i ( D Faith C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressffth.d | |- D = ( C |`s S ) |
|
| 2 | ressffth.i | |- I = ( idFunc ` D ) |
|
| 3 | relfunc | |- Rel ( D Func D ) |
|
| 4 | resscat | |- ( ( C e. Cat /\ S e. V ) -> ( C |`s S ) e. Cat ) |
|
| 5 | 1 4 | eqeltrid | |- ( ( C e. Cat /\ S e. V ) -> D e. Cat ) |
| 6 | 2 | idfucl | |- ( D e. Cat -> I e. ( D Func D ) ) |
| 7 | 5 6 | syl | |- ( ( C e. Cat /\ S e. V ) -> I e. ( D Func D ) ) |
| 8 | 1st2nd | |- ( ( Rel ( D Func D ) /\ I e. ( D Func D ) ) -> I = <. ( 1st ` I ) , ( 2nd ` I ) >. ) |
|
| 9 | 3 7 8 | sylancr | |- ( ( C e. Cat /\ S e. V ) -> I = <. ( 1st ` I ) , ( 2nd ` I ) >. ) |
| 10 | eqidd | |- ( ( C e. Cat /\ S e. V ) -> ( Homf ` D ) = ( Homf ` D ) ) |
|
| 11 | eqidd | |- ( ( C e. Cat /\ S e. V ) -> ( comf ` D ) = ( comf ` D ) ) |
|
| 12 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 13 | 12 | ressinbas | |- ( S e. V -> ( C |`s S ) = ( C |`s ( S i^i ( Base ` C ) ) ) ) |
| 14 | 13 | adantl | |- ( ( C e. Cat /\ S e. V ) -> ( C |`s S ) = ( C |`s ( S i^i ( Base ` C ) ) ) ) |
| 15 | 1 14 | eqtrid | |- ( ( C e. Cat /\ S e. V ) -> D = ( C |`s ( S i^i ( Base ` C ) ) ) ) |
| 16 | 15 | fveq2d | |- ( ( C e. Cat /\ S e. V ) -> ( Homf ` D ) = ( Homf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) ) |
| 17 | eqid | |- ( Homf ` C ) = ( Homf ` C ) |
|
| 18 | simpl | |- ( ( C e. Cat /\ S e. V ) -> C e. Cat ) |
|
| 19 | inss2 | |- ( S i^i ( Base ` C ) ) C_ ( Base ` C ) |
|
| 20 | 19 | a1i | |- ( ( C e. Cat /\ S e. V ) -> ( S i^i ( Base ` C ) ) C_ ( Base ` C ) ) |
| 21 | eqid | |- ( C |`s ( S i^i ( Base ` C ) ) ) = ( C |`s ( S i^i ( Base ` C ) ) ) |
|
| 22 | eqid | |- ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) = ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) |
|
| 23 | 12 17 18 20 21 22 | fullresc | |- ( ( C e. Cat /\ S e. V ) -> ( ( Homf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) = ( Homf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) /\ ( comf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) = ( comf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) ) ) |
| 24 | 23 | simpld | |- ( ( C e. Cat /\ S e. V ) -> ( Homf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) = ( Homf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) ) |
| 25 | 16 24 | eqtrd | |- ( ( C e. Cat /\ S e. V ) -> ( Homf ` D ) = ( Homf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) ) |
| 26 | 15 | fveq2d | |- ( ( C e. Cat /\ S e. V ) -> ( comf ` D ) = ( comf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) ) |
| 27 | 23 | simprd | |- ( ( C e. Cat /\ S e. V ) -> ( comf ` ( C |`s ( S i^i ( Base ` C ) ) ) ) = ( comf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) ) |
| 28 | 26 27 | eqtrd | |- ( ( C e. Cat /\ S e. V ) -> ( comf ` D ) = ( comf ` ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) ) |
| 29 | 1 | ovexi | |- D e. _V |
| 30 | 29 | a1i | |- ( ( C e. Cat /\ S e. V ) -> D e. _V ) |
| 31 | ovexd | |- ( ( C e. Cat /\ S e. V ) -> ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) e. _V ) |
|
| 32 | 10 11 25 28 30 30 30 31 | funcpropd | |- ( ( C e. Cat /\ S e. V ) -> ( D Func D ) = ( D Func ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) ) |
| 33 | 12 17 18 20 | fullsubc | |- ( ( C e. Cat /\ S e. V ) -> ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) e. ( Subcat ` C ) ) |
| 34 | funcres2 | |- ( ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) e. ( Subcat ` C ) -> ( D Func ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) C_ ( D Func C ) ) |
|
| 35 | 33 34 | syl | |- ( ( C e. Cat /\ S e. V ) -> ( D Func ( C |`cat ( ( Homf ` C ) |` ( ( S i^i ( Base ` C ) ) X. ( S i^i ( Base ` C ) ) ) ) ) ) C_ ( D Func C ) ) |
| 36 | 32 35 | eqsstrd | |- ( ( C e. Cat /\ S e. V ) -> ( D Func D ) C_ ( D Func C ) ) |
| 37 | 36 7 | sseldd | |- ( ( C e. Cat /\ S e. V ) -> I e. ( D Func C ) ) |
| 38 | 9 37 | eqeltrrd | |- ( ( C e. Cat /\ S e. V ) -> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( D Func C ) ) |
| 39 | df-br | |- ( ( 1st ` I ) ( D Func C ) ( 2nd ` I ) <-> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( D Func C ) ) |
|
| 40 | 38 39 | sylibr | |- ( ( C e. Cat /\ S e. V ) -> ( 1st ` I ) ( D Func C ) ( 2nd ` I ) ) |
| 41 | f1oi | |- ( _I |` ( x ( Hom ` D ) y ) ) : ( x ( Hom ` D ) y ) -1-1-onto-> ( x ( Hom ` D ) y ) |
|
| 42 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 43 | 5 | adantr | |- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> D e. Cat ) |
| 44 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 45 | simprl | |- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> x e. ( Base ` D ) ) |
|
| 46 | simprr | |- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> y e. ( Base ` D ) ) |
|
| 47 | 2 42 43 44 45 46 | idfu2nd | |- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( x ( 2nd ` I ) y ) = ( _I |` ( x ( Hom ` D ) y ) ) ) |
| 48 | eqidd | |- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( x ( Hom ` D ) y ) = ( x ( Hom ` D ) y ) ) |
|
| 49 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 50 | 1 49 | resshom | |- ( S e. V -> ( Hom ` C ) = ( Hom ` D ) ) |
| 51 | 50 | ad2antlr | |- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( Hom ` C ) = ( Hom ` D ) ) |
| 52 | 2 42 43 45 | idfu1 | |- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ( 1st ` I ) ` x ) = x ) |
| 53 | 2 42 43 46 | idfu1 | |- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ( 1st ` I ) ` y ) = y ) |
| 54 | 51 52 53 | oveq123d | |- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) = ( x ( Hom ` D ) y ) ) |
| 55 | 47 48 54 | f1oeq123d | |- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ( x ( 2nd ` I ) y ) : ( x ( Hom ` D ) y ) -1-1-onto-> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) <-> ( _I |` ( x ( Hom ` D ) y ) ) : ( x ( Hom ` D ) y ) -1-1-onto-> ( x ( Hom ` D ) y ) ) ) |
| 56 | 41 55 | mpbiri | |- ( ( ( C e. Cat /\ S e. V ) /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( x ( 2nd ` I ) y ) : ( x ( Hom ` D ) y ) -1-1-onto-> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) ) |
| 57 | 56 | ralrimivva | |- ( ( C e. Cat /\ S e. V ) -> A. x e. ( Base ` D ) A. y e. ( Base ` D ) ( x ( 2nd ` I ) y ) : ( x ( Hom ` D ) y ) -1-1-onto-> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) ) |
| 58 | 42 44 49 | isffth2 | |- ( ( 1st ` I ) ( ( D Full C ) i^i ( D Faith C ) ) ( 2nd ` I ) <-> ( ( 1st ` I ) ( D Func C ) ( 2nd ` I ) /\ A. x e. ( Base ` D ) A. y e. ( Base ` D ) ( x ( 2nd ` I ) y ) : ( x ( Hom ` D ) y ) -1-1-onto-> ( ( ( 1st ` I ) ` x ) ( Hom ` C ) ( ( 1st ` I ) ` y ) ) ) ) |
| 59 | 40 57 58 | sylanbrc | |- ( ( C e. Cat /\ S e. V ) -> ( 1st ` I ) ( ( D Full C ) i^i ( D Faith C ) ) ( 2nd ` I ) ) |
| 60 | df-br | |- ( ( 1st ` I ) ( ( D Full C ) i^i ( D Faith C ) ) ( 2nd ` I ) <-> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( ( D Full C ) i^i ( D Faith C ) ) ) |
|
| 61 | 59 60 | sylib | |- ( ( C e. Cat /\ S e. V ) -> <. ( 1st ` I ) , ( 2nd ` I ) >. e. ( ( D Full C ) i^i ( D Faith C ) ) ) |
| 62 | 9 61 | eqeltrd | |- ( ( C e. Cat /\ S e. V ) -> I e. ( ( D Full C ) i^i ( D Faith C ) ) ) |