This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The full subcategory generated by a subset of objects is the category with these objects and the same morphisms as the original. The result is always a subcategory (and it is full, meaning that all morphisms of the original category between objects in the subcategory is also in the subcategory), see definition 4.1(2) of Adamek p. 48. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fullsubc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| fullsubc.h | ⊢ 𝐻 = ( Homf ‘ 𝐶 ) | ||
| fullsubc.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| fullsubc.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | ||
| Assertion | fullsubc | ⊢ ( 𝜑 → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) ∈ ( Subcat ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fullsubc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | fullsubc.h | ⊢ 𝐻 = ( Homf ‘ 𝐶 ) | |
| 3 | fullsubc.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | fullsubc.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | |
| 5 | 2 1 | homffn | ⊢ 𝐻 Fn ( 𝐵 × 𝐵 ) |
| 6 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 7 | sscres | ⊢ ( ( 𝐻 Fn ( 𝐵 × 𝐵 ) ∧ 𝐵 ∈ V ) → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) ⊆cat 𝐻 ) | |
| 8 | 5 6 7 | mp2an | ⊢ ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) ⊆cat 𝐻 |
| 9 | 8 | a1i | ⊢ ( 𝜑 → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) ⊆cat 𝐻 ) |
| 10 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 11 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 12 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐶 ∈ Cat ) |
| 13 | 4 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 14 | 1 10 11 12 13 | catidcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 15 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) | |
| 16 | 15 15 | ovresd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑥 ) = ( 𝑥 𝐻 𝑥 ) ) |
| 17 | 2 1 10 13 13 | homfval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 𝐻 𝑥 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 18 | 16 17 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑥 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 19 | 14 18 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑥 ) ) |
| 20 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 21 | 12 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝐶 ∈ Cat ) |
| 22 | 13 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑥 ∈ 𝐵 ) |
| 23 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑆 ⊆ 𝐵 ) |
| 24 | 23 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝐵 ) |
| 25 | 24 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑦 ∈ 𝐵 ) |
| 26 | 25 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑦 ∈ 𝐵 ) |
| 27 | 23 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑆 ⊆ 𝐵 ) |
| 28 | 27 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) |
| 29 | 28 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑧 ∈ 𝐵 ) |
| 30 | simprl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) | |
| 31 | simprr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) | |
| 32 | 1 10 20 21 22 26 29 30 31 | catcocl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 33 | 15 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑥 ∈ 𝑆 ) |
| 34 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑧 ∈ 𝑆 ) | |
| 35 | 33 34 | ovresd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) = ( 𝑥 𝐻 𝑧 ) ) |
| 36 | 2 1 10 22 29 | homfval | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 37 | 35 36 | eqtrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 38 | 32 37 | eleqtrrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) ) |
| 39 | 38 | ralrimivva | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) ) |
| 40 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) | |
| 41 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) | |
| 42 | 40 41 | ovresd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
| 43 | 13 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 44 | 2 1 10 43 24 | homfval | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 45 | 42 44 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 46 | 45 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 47 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) | |
| 48 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝑆 ) | |
| 49 | 47 48 | ovresd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑦 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) = ( 𝑦 𝐻 𝑧 ) ) |
| 50 | 2 1 10 25 28 | homfval | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 51 | 49 50 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑦 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 52 | 51 | raleqdv | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( ∀ 𝑔 ∈ ( 𝑦 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) ↔ ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) ) ) |
| 53 | 46 52 | raleqbidv | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( ∀ 𝑓 ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) ) ) |
| 54 | 39 53 | mpbird | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ∀ 𝑓 ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) ) |
| 55 | 54 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) ) |
| 56 | 55 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) ) |
| 57 | 19 56 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) ) ) |
| 58 | 57 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) ) ) |
| 59 | xpss12 | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑆 × 𝑆 ) ⊆ ( 𝐵 × 𝐵 ) ) | |
| 60 | 4 4 59 | syl2anc | ⊢ ( 𝜑 → ( 𝑆 × 𝑆 ) ⊆ ( 𝐵 × 𝐵 ) ) |
| 61 | fnssres | ⊢ ( ( 𝐻 Fn ( 𝐵 × 𝐵 ) ∧ ( 𝑆 × 𝑆 ) ⊆ ( 𝐵 × 𝐵 ) ) → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) Fn ( 𝑆 × 𝑆 ) ) | |
| 62 | 5 60 61 | sylancr | ⊢ ( 𝜑 → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) Fn ( 𝑆 × 𝑆 ) ) |
| 63 | 2 11 20 3 62 | issubc2 | ⊢ ( 𝜑 → ( ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) ∈ ( Subcat ‘ 𝐶 ) ↔ ( ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) ⊆cat 𝐻 ∧ ∀ 𝑥 ∈ 𝑆 ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑥 ) ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑧 ) ) ) ) ) |
| 64 | 9 58 63 | mpbir2and | ⊢ ( 𝜑 → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) ∈ ( Subcat ‘ 𝐶 ) ) |