This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor into a restricted category is also a functor into the whole category. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funcres2 | ⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) ⊆ ( 𝐶 Func 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc | ⊢ Rel ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) | |
| 2 | 1 | a1i | ⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → Rel ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) ) |
| 3 | simpr | ⊢ ( ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) ∧ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) → 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 5 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 6 | simpl | ⊢ ( ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) ∧ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) → 𝑅 ∈ ( Subcat ‘ 𝐷 ) ) | |
| 7 | eqidd | ⊢ ( ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) ∧ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) → dom dom 𝑅 = dom dom 𝑅 ) | |
| 8 | 6 7 | subcfn | ⊢ ( ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) ∧ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) → 𝑅 Fn ( dom dom 𝑅 × dom dom 𝑅 ) ) |
| 9 | eqid | ⊢ ( Base ‘ ( 𝐷 ↾cat 𝑅 ) ) = ( Base ‘ ( 𝐷 ↾cat 𝑅 ) ) | |
| 10 | 4 9 3 | funcf1 | ⊢ ( ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) ∧ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) → 𝑓 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ ( 𝐷 ↾cat 𝑅 ) ) ) |
| 11 | eqid | ⊢ ( 𝐷 ↾cat 𝑅 ) = ( 𝐷 ↾cat 𝑅 ) | |
| 12 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 13 | subcrcl | ⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → 𝐷 ∈ Cat ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) ∧ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) → 𝐷 ∈ Cat ) |
| 15 | 6 8 12 | subcss1 | ⊢ ( ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) ∧ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) → dom dom 𝑅 ⊆ ( Base ‘ 𝐷 ) ) |
| 16 | 11 12 14 8 15 | rescbas | ⊢ ( ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) ∧ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) → dom dom 𝑅 = ( Base ‘ ( 𝐷 ↾cat 𝑅 ) ) ) |
| 17 | 16 | feq3d | ⊢ ( ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) ∧ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) → ( 𝑓 : ( Base ‘ 𝐶 ) ⟶ dom dom 𝑅 ↔ 𝑓 : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ ( 𝐷 ↾cat 𝑅 ) ) ) ) |
| 18 | 10 17 | mpbird | ⊢ ( ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) ∧ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) → 𝑓 : ( Base ‘ 𝐶 ) ⟶ dom dom 𝑅 ) |
| 19 | eqid | ⊢ ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) = ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) | |
| 20 | simplr | ⊢ ( ( ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) ∧ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) | |
| 21 | simprl | ⊢ ( ( ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) ∧ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 22 | simprr | ⊢ ( ( ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) ∧ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 23 | 4 5 19 20 21 22 | funcf2 | ⊢ ( ( ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) ∧ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 𝑔 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 24 | 11 12 14 8 15 | reschom | ⊢ ( ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) ∧ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) → 𝑅 = ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) ∧ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑅 = ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ) |
| 26 | 25 | oveqd | ⊢ ( ( ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) ∧ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝑓 ‘ 𝑦 ) ) ) |
| 27 | 26 | feq3d | ⊢ ( ( ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) ∧ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 𝑥 𝑔 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑓 ‘ 𝑦 ) ) ↔ ( 𝑥 𝑔 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝐷 ↾cat 𝑅 ) ) ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 28 | 23 27 | mpbird | ⊢ ( ( ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) ∧ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 𝑔 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑓 ‘ 𝑦 ) ) ) |
| 29 | 4 5 6 8 18 28 | funcres2b | ⊢ ( ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) ∧ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) → ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ↔ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) ) |
| 30 | 3 29 | mpbird | ⊢ ( ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) ∧ 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ) → 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ) |
| 31 | 30 | ex | ⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → ( 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 → 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ) ) |
| 32 | df-br | ⊢ ( 𝑓 ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) 𝑔 ↔ 〈 𝑓 , 𝑔 〉 ∈ ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) ) | |
| 33 | df-br | ⊢ ( 𝑓 ( 𝐶 Func 𝐷 ) 𝑔 ↔ 〈 𝑓 , 𝑔 〉 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 34 | 31 32 33 | 3imtr3g | ⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → ( 〈 𝑓 , 𝑔 〉 ∈ ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) → 〈 𝑓 , 𝑔 〉 ∈ ( 𝐶 Func 𝐷 ) ) ) |
| 35 | 2 34 | relssdv | ⊢ ( 𝑅 ∈ ( Subcat ‘ 𝐷 ) → ( 𝐶 Func ( 𝐷 ↾cat 𝑅 ) ) ⊆ ( 𝐶 Func 𝐷 ) ) |