This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The category formed by structure restriction is the same as the category restriction. (Contributed by Mario Carneiro, 5-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fullsubc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| fullsubc.h | ⊢ 𝐻 = ( Homf ‘ 𝐶 ) | ||
| fullsubc.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| fullsubc.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | ||
| fullsubc.d | ⊢ 𝐷 = ( 𝐶 ↾s 𝑆 ) | ||
| fullsubc.e | ⊢ 𝐸 = ( 𝐶 ↾cat ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) ) | ||
| Assertion | fullresc | ⊢ ( 𝜑 → ( ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐸 ) ∧ ( compf ‘ 𝐷 ) = ( compf ‘ 𝐸 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fullsubc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | fullsubc.h | ⊢ 𝐻 = ( Homf ‘ 𝐶 ) | |
| 3 | fullsubc.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | fullsubc.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | |
| 5 | fullsubc.d | ⊢ 𝐷 = ( 𝐶 ↾s 𝑆 ) | |
| 6 | fullsubc.e | ⊢ 𝐸 = ( 𝐶 ↾cat ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) ) | |
| 7 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 8 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑆 ⊆ 𝐵 ) |
| 9 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ 𝑆 ) | |
| 10 | 8 9 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ 𝐵 ) |
| 11 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ 𝑆 ) | |
| 12 | 8 11 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ 𝐵 ) |
| 13 | 2 1 7 10 12 | homfval | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 14 | 9 11 | ovresd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
| 15 | 2 1 | homffn | ⊢ 𝐻 Fn ( 𝐵 × 𝐵 ) |
| 16 | xpss12 | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑆 × 𝑆 ) ⊆ ( 𝐵 × 𝐵 ) ) | |
| 17 | 4 4 16 | syl2anc | ⊢ ( 𝜑 → ( 𝑆 × 𝑆 ) ⊆ ( 𝐵 × 𝐵 ) ) |
| 18 | fnssres | ⊢ ( ( 𝐻 Fn ( 𝐵 × 𝐵 ) ∧ ( 𝑆 × 𝑆 ) ⊆ ( 𝐵 × 𝐵 ) ) → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) Fn ( 𝑆 × 𝑆 ) ) | |
| 19 | 15 17 18 | sylancr | ⊢ ( 𝜑 → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) Fn ( 𝑆 × 𝑆 ) ) |
| 20 | 6 1 3 19 4 | reschom | ⊢ ( 𝜑 → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) = ( Hom ‘ 𝐸 ) ) |
| 21 | 20 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐸 ) 𝑦 ) ) |
| 22 | 14 21 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐸 ) 𝑦 ) ) |
| 23 | 5 1 | ressbas2 | ⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 = ( Base ‘ 𝐷 ) ) |
| 24 | 4 23 | syl | ⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝐷 ) ) |
| 25 | fvex | ⊢ ( Base ‘ 𝐷 ) ∈ V | |
| 26 | 24 25 | eqeltrdi | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 27 | 5 7 | resshom | ⊢ ( 𝑆 ∈ V → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐷 ) ) |
| 28 | 26 27 | syl | ⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐷 ) ) |
| 29 | 28 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 30 | 13 22 29 | 3eqtr3rd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐸 ) 𝑦 ) ) |
| 31 | 30 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐸 ) 𝑦 ) ) |
| 32 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 33 | eqid | ⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) | |
| 34 | 6 1 3 19 4 | rescbas | ⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝐸 ) ) |
| 35 | 32 33 24 34 | homfeq | ⊢ ( 𝜑 → ( ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐸 ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐸 ) 𝑦 ) ) ) |
| 36 | 31 35 | mpbird | ⊢ ( 𝜑 → ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐸 ) ) |
| 37 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 38 | 5 37 | ressco | ⊢ ( 𝑆 ∈ V → ( comp ‘ 𝐶 ) = ( comp ‘ 𝐷 ) ) |
| 39 | 26 38 | syl | ⊢ ( 𝜑 → ( comp ‘ 𝐶 ) = ( comp ‘ 𝐷 ) ) |
| 40 | 6 1 3 19 4 37 | rescco | ⊢ ( 𝜑 → ( comp ‘ 𝐶 ) = ( comp ‘ 𝐸 ) ) |
| 41 | 39 40 | eqtr3d | ⊢ ( 𝜑 → ( comp ‘ 𝐷 ) = ( comp ‘ 𝐸 ) ) |
| 42 | 41 36 | comfeqd | ⊢ ( 𝜑 → ( compf ‘ 𝐷 ) = ( compf ‘ 𝐸 ) ) |
| 43 | 36 42 | jca | ⊢ ( 𝜑 → ( ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐸 ) ∧ ( compf ‘ 𝐷 ) = ( compf ‘ 𝐸 ) ) ) |