This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of the category of categories to a subset is the category of categories in the subset. Thus, the CatCatU categories for different U are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resscatc.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| resscatc.d | ⊢ 𝐷 = ( CatCat ‘ 𝑉 ) | ||
| resscatc.1 | ⊢ ( 𝜑 → 𝑈 ∈ 𝑊 ) | ||
| resscatc.2 | ⊢ ( 𝜑 → 𝑉 ⊆ 𝑈 ) | ||
| Assertion | resscatc | ⊢ ( 𝜑 → ( ( Homf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( Homf ‘ 𝐷 ) ∧ ( compf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( compf ‘ 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resscatc.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| 2 | resscatc.d | ⊢ 𝐷 = ( CatCat ‘ 𝑉 ) | |
| 3 | resscatc.1 | ⊢ ( 𝜑 → 𝑈 ∈ 𝑊 ) | |
| 4 | resscatc.2 | ⊢ ( 𝜑 → 𝑉 ⊆ 𝑈 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 6 | 3 4 | ssexd | ⊢ ( 𝜑 → 𝑉 ∈ V ) |
| 7 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑉 ∈ V ) |
| 8 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 9 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑥 ∈ ( 𝑉 ∩ Cat ) ) | |
| 10 | 2 5 6 | catcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = ( 𝑉 ∩ Cat ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → ( Base ‘ 𝐷 ) = ( 𝑉 ∩ Cat ) ) |
| 12 | 9 11 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑥 ∈ ( Base ‘ 𝐷 ) ) |
| 13 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑦 ∈ ( 𝑉 ∩ Cat ) ) | |
| 14 | 13 11 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
| 15 | 2 5 7 8 12 14 | catchom | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) = ( 𝑥 Func 𝑦 ) ) |
| 16 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 17 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑈 ∈ 𝑊 ) |
| 18 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 19 | inass | ⊢ ( ( 𝑉 ∩ 𝑈 ) ∩ Cat ) = ( 𝑉 ∩ ( 𝑈 ∩ Cat ) ) | |
| 20 | 1 16 3 | catcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Cat ) ) |
| 21 | 20 | ineq2d | ⊢ ( 𝜑 → ( 𝑉 ∩ ( Base ‘ 𝐶 ) ) = ( 𝑉 ∩ ( 𝑈 ∩ Cat ) ) ) |
| 22 | 19 21 | eqtr4id | ⊢ ( 𝜑 → ( ( 𝑉 ∩ 𝑈 ) ∩ Cat ) = ( 𝑉 ∩ ( Base ‘ 𝐶 ) ) ) |
| 23 | dfss2 | ⊢ ( 𝑉 ⊆ 𝑈 ↔ ( 𝑉 ∩ 𝑈 ) = 𝑉 ) | |
| 24 | 4 23 | sylib | ⊢ ( 𝜑 → ( 𝑉 ∩ 𝑈 ) = 𝑉 ) |
| 25 | 24 | ineq1d | ⊢ ( 𝜑 → ( ( 𝑉 ∩ 𝑈 ) ∩ Cat ) = ( 𝑉 ∩ Cat ) ) |
| 26 | eqid | ⊢ ( 𝐶 ↾s 𝑉 ) = ( 𝐶 ↾s 𝑉 ) | |
| 27 | 26 16 | ressbas | ⊢ ( 𝑉 ∈ V → ( 𝑉 ∩ ( Base ‘ 𝐶 ) ) = ( Base ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 28 | 6 27 | syl | ⊢ ( 𝜑 → ( 𝑉 ∩ ( Base ‘ 𝐶 ) ) = ( Base ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 29 | 22 25 28 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑉 ∩ Cat ) = ( Base ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 30 | 26 16 | ressbasss | ⊢ ( Base ‘ ( 𝐶 ↾s 𝑉 ) ) ⊆ ( Base ‘ 𝐶 ) |
| 31 | 29 30 | eqsstrdi | ⊢ ( 𝜑 → ( 𝑉 ∩ Cat ) ⊆ ( Base ‘ 𝐶 ) ) |
| 32 | 31 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → ( 𝑉 ∩ Cat ) ⊆ ( Base ‘ 𝐶 ) ) |
| 33 | 32 9 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 34 | 32 13 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 35 | 1 16 17 18 33 34 | catchom | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 Func 𝑦 ) ) |
| 36 | 26 18 | resshom | ⊢ ( 𝑉 ∈ V → ( Hom ‘ 𝐶 ) = ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 37 | 6 36 | syl | ⊢ ( 𝜑 → ( Hom ‘ 𝐶 ) = ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 38 | 37 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑦 ) ) |
| 39 | 15 35 38 | 3eqtr2rd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ) ) → ( 𝑥 ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 40 | 39 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑦 ∈ ( 𝑉 ∩ Cat ) ( 𝑥 ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) |
| 41 | eqid | ⊢ ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) = ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) | |
| 42 | 10 | eqcomd | ⊢ ( 𝜑 → ( 𝑉 ∩ Cat ) = ( Base ‘ 𝐷 ) ) |
| 43 | 41 8 29 42 | homfeq | ⊢ ( 𝜑 → ( ( Homf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( Homf ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑦 ∈ ( 𝑉 ∩ Cat ) ( 𝑥 ( Hom ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) ) |
| 44 | 40 43 | mpbird | ⊢ ( 𝜑 → ( Homf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( Homf ‘ 𝐷 ) ) |
| 45 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑉 ∈ V ) |
| 46 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 47 | simplr1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑥 ∈ ( 𝑉 ∩ Cat ) ) | |
| 48 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( Base ‘ 𝐷 ) = ( 𝑉 ∩ Cat ) ) |
| 49 | 47 48 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐷 ) ) |
| 50 | simplr2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑦 ∈ ( 𝑉 ∩ Cat ) ) | |
| 51 | 50 48 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) |
| 52 | simplr3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑧 ∈ ( 𝑉 ∩ Cat ) ) | |
| 53 | 52 48 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐷 ) ) |
| 54 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ) | |
| 55 | 2 5 45 8 49 51 | catchom | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) = ( 𝑥 Func 𝑦 ) ) |
| 56 | 54 55 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 Func 𝑦 ) ) |
| 57 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) | |
| 58 | 2 5 45 8 51 53 | catchom | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) = ( 𝑦 Func 𝑧 ) ) |
| 59 | 57 58 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 Func 𝑧 ) ) |
| 60 | 2 5 45 46 49 51 53 56 59 | catcco | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ∘func 𝑓 ) ) |
| 61 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑈 ∈ 𝑊 ) |
| 62 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 63 | 31 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑉 ∩ Cat ) ⊆ ( Base ‘ 𝐶 ) ) |
| 64 | 63 47 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 65 | 63 50 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 66 | 63 52 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
| 67 | 1 16 61 62 64 65 66 56 59 | catcco | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ∘func 𝑓 ) ) |
| 68 | 26 62 | ressco | ⊢ ( 𝑉 ∈ V → ( comp ‘ 𝐶 ) = ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 69 | 6 68 | syl | ⊢ ( 𝜑 → ( comp ‘ 𝐶 ) = ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 70 | 69 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( comp ‘ 𝐶 ) = ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 71 | 70 | oveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) = ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) ) |
| 72 | 71 | oveqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) 𝑓 ) ) |
| 73 | 60 67 72 | 3eqtr2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) 𝑓 ) ) |
| 74 | 73 | ralrimivva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∧ 𝑧 ∈ ( 𝑉 ∩ Cat ) ) ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) 𝑓 ) ) |
| 75 | 74 | ralrimivvva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑧 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) 𝑓 ) ) |
| 76 | eqid | ⊢ ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) = ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) | |
| 77 | 44 | eqcomd | ⊢ ( 𝜑 → ( Homf ‘ 𝐷 ) = ( Homf ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 78 | 46 76 8 42 29 77 | comfeq | ⊢ ( 𝜑 → ( ( compf ‘ 𝐷 ) = ( compf ‘ ( 𝐶 ↾s 𝑉 ) ) ↔ ∀ 𝑥 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑦 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑧 ∈ ( 𝑉 ∩ Cat ) ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐷 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐷 ) 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ ( 𝐶 ↾s 𝑉 ) ) 𝑧 ) 𝑓 ) ) ) |
| 79 | 75 78 | mpbird | ⊢ ( 𝜑 → ( compf ‘ 𝐷 ) = ( compf ‘ ( 𝐶 ↾s 𝑉 ) ) ) |
| 80 | 79 | eqcomd | ⊢ ( 𝜑 → ( compf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( compf ‘ 𝐷 ) ) |
| 81 | 44 80 | jca | ⊢ ( 𝜑 → ( ( Homf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( Homf ‘ 𝐷 ) ∧ ( compf ‘ ( 𝐶 ↾s 𝑉 ) ) = ( compf ‘ 𝐷 ) ) ) |