This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for two categories with the same hom-sets to have the same composition. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | comfeq.1 | ⊢ · = ( comp ‘ 𝐶 ) | |
| comfeq.2 | ⊢ ∙ = ( comp ‘ 𝐷 ) | ||
| comfeq.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| comfeq.3 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | ||
| comfeq.4 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐷 ) ) | ||
| comfeq.5 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | ||
| Assertion | comfeq | ⊢ ( 𝜑 → ( ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfeq.1 | ⊢ · = ( comp ‘ 𝐶 ) | |
| 2 | comfeq.2 | ⊢ ∙ = ( comp ‘ 𝐷 ) | |
| 3 | comfeq.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | comfeq.3 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
| 5 | comfeq.4 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐷 ) ) | |
| 6 | comfeq.5 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| 7 | 4 | sqxpeqd | ⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 8 | eqidd | ⊢ ( 𝜑 → ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) | |
| 9 | 7 4 8 | mpoeq123dv | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) ) |
| 10 | eqid | ⊢ ( compf ‘ 𝐶 ) = ( compf ‘ 𝐶 ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 12 | 10 11 3 1 | comfffval | ⊢ ( compf ‘ 𝐶 ) = ( 𝑢 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) , 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) |
| 13 | 9 12 | eqtr4di | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( compf ‘ 𝐶 ) ) |
| 14 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 15 | 6 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 16 | xp2nd | ⊢ ( 𝑢 ∈ ( 𝐵 × 𝐵 ) → ( 2nd ‘ 𝑢 ) ∈ 𝐵 ) | |
| 17 | 16 | 3ad2ant2 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 2nd ‘ 𝑢 ) ∈ 𝐵 ) |
| 18 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 19 | 17 18 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 2nd ‘ 𝑢 ) ∈ ( Base ‘ 𝐶 ) ) |
| 20 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) | |
| 21 | 20 18 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
| 22 | 11 3 14 15 19 21 | homfeqval | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) = ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) ) |
| 23 | xp1st | ⊢ ( 𝑢 ∈ ( 𝐵 × 𝐵 ) → ( 1st ‘ 𝑢 ) ∈ 𝐵 ) | |
| 24 | 23 | 3ad2ant2 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 1st ‘ 𝑢 ) ∈ 𝐵 ) |
| 25 | 24 18 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 1st ‘ 𝑢 ) ∈ ( Base ‘ 𝐶 ) ) |
| 26 | 11 3 14 15 25 19 | homfeqval | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( 1st ‘ 𝑢 ) 𝐻 ( 2nd ‘ 𝑢 ) ) = ( ( 1st ‘ 𝑢 ) ( Hom ‘ 𝐷 ) ( 2nd ‘ 𝑢 ) ) ) |
| 27 | df-ov | ⊢ ( ( 1st ‘ 𝑢 ) 𝐻 ( 2nd ‘ 𝑢 ) ) = ( 𝐻 ‘ 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) | |
| 28 | df-ov | ⊢ ( ( 1st ‘ 𝑢 ) ( Hom ‘ 𝐷 ) ( 2nd ‘ 𝑢 ) ) = ( ( Hom ‘ 𝐷 ) ‘ 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) | |
| 29 | 26 27 28 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐻 ‘ 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) = ( ( Hom ‘ 𝐷 ) ‘ 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) ) |
| 30 | 1st2nd2 | ⊢ ( 𝑢 ∈ ( 𝐵 × 𝐵 ) → 𝑢 = 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) | |
| 31 | 30 | 3ad2ant2 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → 𝑢 = 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) |
| 32 | 31 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) ) |
| 33 | 31 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) = ( ( Hom ‘ 𝐷 ) ‘ 〈 ( 1st ‘ 𝑢 ) , ( 2nd ‘ 𝑢 ) 〉 ) ) |
| 34 | 29 32 33 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝐻 ‘ 𝑢 ) = ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ) |
| 35 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) | |
| 36 | 22 34 35 | mpoeq123dv | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) |
| 37 | 36 | mpoeq3dva | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ) |
| 38 | 5 | sqxpeqd | ⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) ) |
| 39 | eqidd | ⊢ ( 𝜑 → ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) | |
| 40 | 38 5 39 | mpoeq123dv | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ) |
| 41 | 37 40 | eqtrd | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ) |
| 42 | eqid | ⊢ ( compf ‘ 𝐷 ) = ( compf ‘ 𝐷 ) | |
| 43 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 44 | 42 43 14 2 | comfffval | ⊢ ( compf ‘ 𝐷 ) = ( 𝑢 ∈ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) , 𝑧 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) ( Hom ‘ 𝐷 ) 𝑧 ) , 𝑓 ∈ ( ( Hom ‘ 𝐷 ) ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) |
| 45 | 41 44 | eqtr4di | ⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) = ( compf ‘ 𝐷 ) ) |
| 46 | 13 45 | eqeq12d | ⊢ ( 𝜑 → ( ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ↔ ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) ) |
| 47 | ovex | ⊢ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) ∈ V | |
| 48 | fvex | ⊢ ( 𝐻 ‘ 𝑢 ) ∈ V | |
| 49 | 47 48 | mpoex | ⊢ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ∈ V |
| 50 | 49 | rgen2w | ⊢ ∀ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∀ 𝑧 ∈ 𝐵 ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ∈ V |
| 51 | mpo2eqb | ⊢ ( ∀ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∀ 𝑧 ∈ 𝐵 ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ∈ V → ( ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∀ 𝑧 ∈ 𝐵 ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ) | |
| 52 | 50 51 | ax-mp | ⊢ ( ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∀ 𝑧 ∈ 𝐵 ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) |
| 53 | vex | ⊢ 𝑥 ∈ V | |
| 54 | vex | ⊢ 𝑦 ∈ V | |
| 55 | 53 54 | op2ndd | ⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑢 ) = 𝑦 ) |
| 56 | 55 | oveq1d | ⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) = ( 𝑦 𝐻 𝑧 ) ) |
| 57 | fveq2 | ⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑢 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) ) | |
| 58 | df-ov | ⊢ ( 𝑥 𝐻 𝑦 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 59 | 57 58 | eqtr4di | ⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑢 ) = ( 𝑥 𝐻 𝑦 ) ) |
| 60 | oveq1 | ⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝑢 · 𝑧 ) = ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) ) | |
| 61 | 60 | oveqd | ⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) |
| 62 | oveq1 | ⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝑢 ∙ 𝑧 ) = ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) ) | |
| 63 | 62 | oveqd | ⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) |
| 64 | 61 63 | eqeq12d | ⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ↔ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
| 65 | 59 64 | raleqbidv | ⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ∀ 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ↔ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
| 66 | 56 65 | raleqbidv | ⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ∀ 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ↔ ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
| 67 | ovex | ⊢ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ∈ V | |
| 68 | 67 | rgen2w | ⊢ ∀ 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ∈ V |
| 69 | mpo2eqb | ⊢ ( ∀ 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ∈ V → ( ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) | |
| 70 | 68 69 | ax-mp | ⊢ ( ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) |
| 71 | ralcom | ⊢ ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ↔ ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) | |
| 72 | 66 70 71 | 3bitr4g | ⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
| 73 | 72 | ralbidv | ⊢ ( 𝑢 = 〈 𝑥 , 𝑦 〉 → ( ∀ 𝑧 ∈ 𝐵 ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |
| 74 | 73 | ralxp | ⊢ ( ∀ 𝑢 ∈ ( 𝐵 × 𝐵 ) ∀ 𝑧 ∈ 𝐵 ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) |
| 75 | 52 74 | bitri | ⊢ ( ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 · 𝑧 ) 𝑓 ) ) ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑢 ) 𝐻 𝑧 ) , 𝑓 ∈ ( 𝐻 ‘ 𝑢 ) ↦ ( 𝑔 ( 𝑢 ∙ 𝑧 ) 𝑓 ) ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) |
| 76 | 46 75 | bitr3di | ⊢ ( 𝜑 → ( ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ∙ 𝑧 ) 𝑓 ) ) ) |