This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of the category of categories to a subset is the category of categories in the subset. Thus, the CatCatU categories for different U are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resscatc.c | |- C = ( CatCat ` U ) |
|
| resscatc.d | |- D = ( CatCat ` V ) |
||
| resscatc.1 | |- ( ph -> U e. W ) |
||
| resscatc.2 | |- ( ph -> V C_ U ) |
||
| Assertion | resscatc | |- ( ph -> ( ( Homf ` ( C |`s V ) ) = ( Homf ` D ) /\ ( comf ` ( C |`s V ) ) = ( comf ` D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resscatc.c | |- C = ( CatCat ` U ) |
|
| 2 | resscatc.d | |- D = ( CatCat ` V ) |
|
| 3 | resscatc.1 | |- ( ph -> U e. W ) |
|
| 4 | resscatc.2 | |- ( ph -> V C_ U ) |
|
| 5 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 6 | 3 4 | ssexd | |- ( ph -> V e. _V ) |
| 7 | 6 | adantr | |- ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) ) ) -> V e. _V ) |
| 8 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 9 | simprl | |- ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) ) ) -> x e. ( V i^i Cat ) ) |
|
| 10 | 2 5 6 | catcbas | |- ( ph -> ( Base ` D ) = ( V i^i Cat ) ) |
| 11 | 10 | adantr | |- ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) ) ) -> ( Base ` D ) = ( V i^i Cat ) ) |
| 12 | 9 11 | eleqtrrd | |- ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) ) ) -> x e. ( Base ` D ) ) |
| 13 | simprr | |- ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) ) ) -> y e. ( V i^i Cat ) ) |
|
| 14 | 13 11 | eleqtrrd | |- ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) ) ) -> y e. ( Base ` D ) ) |
| 15 | 2 5 7 8 12 14 | catchom | |- ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) ) ) -> ( x ( Hom ` D ) y ) = ( x Func y ) ) |
| 16 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 17 | 3 | adantr | |- ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) ) ) -> U e. W ) |
| 18 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 19 | inass | |- ( ( V i^i U ) i^i Cat ) = ( V i^i ( U i^i Cat ) ) |
|
| 20 | 1 16 3 | catcbas | |- ( ph -> ( Base ` C ) = ( U i^i Cat ) ) |
| 21 | 20 | ineq2d | |- ( ph -> ( V i^i ( Base ` C ) ) = ( V i^i ( U i^i Cat ) ) ) |
| 22 | 19 21 | eqtr4id | |- ( ph -> ( ( V i^i U ) i^i Cat ) = ( V i^i ( Base ` C ) ) ) |
| 23 | dfss2 | |- ( V C_ U <-> ( V i^i U ) = V ) |
|
| 24 | 4 23 | sylib | |- ( ph -> ( V i^i U ) = V ) |
| 25 | 24 | ineq1d | |- ( ph -> ( ( V i^i U ) i^i Cat ) = ( V i^i Cat ) ) |
| 26 | eqid | |- ( C |`s V ) = ( C |`s V ) |
|
| 27 | 26 16 | ressbas | |- ( V e. _V -> ( V i^i ( Base ` C ) ) = ( Base ` ( C |`s V ) ) ) |
| 28 | 6 27 | syl | |- ( ph -> ( V i^i ( Base ` C ) ) = ( Base ` ( C |`s V ) ) ) |
| 29 | 22 25 28 | 3eqtr3d | |- ( ph -> ( V i^i Cat ) = ( Base ` ( C |`s V ) ) ) |
| 30 | 26 16 | ressbasss | |- ( Base ` ( C |`s V ) ) C_ ( Base ` C ) |
| 31 | 29 30 | eqsstrdi | |- ( ph -> ( V i^i Cat ) C_ ( Base ` C ) ) |
| 32 | 31 | adantr | |- ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) ) ) -> ( V i^i Cat ) C_ ( Base ` C ) ) |
| 33 | 32 9 | sseldd | |- ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) ) ) -> x e. ( Base ` C ) ) |
| 34 | 32 13 | sseldd | |- ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) ) ) -> y e. ( Base ` C ) ) |
| 35 | 1 16 17 18 33 34 | catchom | |- ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) ) ) -> ( x ( Hom ` C ) y ) = ( x Func y ) ) |
| 36 | 26 18 | resshom | |- ( V e. _V -> ( Hom ` C ) = ( Hom ` ( C |`s V ) ) ) |
| 37 | 6 36 | syl | |- ( ph -> ( Hom ` C ) = ( Hom ` ( C |`s V ) ) ) |
| 38 | 37 | oveqdr | |- ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) ) ) -> ( x ( Hom ` C ) y ) = ( x ( Hom ` ( C |`s V ) ) y ) ) |
| 39 | 15 35 38 | 3eqtr2rd | |- ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) ) ) -> ( x ( Hom ` ( C |`s V ) ) y ) = ( x ( Hom ` D ) y ) ) |
| 40 | 39 | ralrimivva | |- ( ph -> A. x e. ( V i^i Cat ) A. y e. ( V i^i Cat ) ( x ( Hom ` ( C |`s V ) ) y ) = ( x ( Hom ` D ) y ) ) |
| 41 | eqid | |- ( Hom ` ( C |`s V ) ) = ( Hom ` ( C |`s V ) ) |
|
| 42 | 10 | eqcomd | |- ( ph -> ( V i^i Cat ) = ( Base ` D ) ) |
| 43 | 41 8 29 42 | homfeq | |- ( ph -> ( ( Homf ` ( C |`s V ) ) = ( Homf ` D ) <-> A. x e. ( V i^i Cat ) A. y e. ( V i^i Cat ) ( x ( Hom ` ( C |`s V ) ) y ) = ( x ( Hom ` D ) y ) ) ) |
| 44 | 40 43 | mpbird | |- ( ph -> ( Homf ` ( C |`s V ) ) = ( Homf ` D ) ) |
| 45 | 6 | ad2antrr | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> V e. _V ) |
| 46 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 47 | simplr1 | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> x e. ( V i^i Cat ) ) |
|
| 48 | 10 | ad2antrr | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> ( Base ` D ) = ( V i^i Cat ) ) |
| 49 | 47 48 | eleqtrrd | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> x e. ( Base ` D ) ) |
| 50 | simplr2 | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> y e. ( V i^i Cat ) ) |
|
| 51 | 50 48 | eleqtrrd | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> y e. ( Base ` D ) ) |
| 52 | simplr3 | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> z e. ( V i^i Cat ) ) |
|
| 53 | 52 48 | eleqtrrd | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> z e. ( Base ` D ) ) |
| 54 | simprl | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> f e. ( x ( Hom ` D ) y ) ) |
|
| 55 | 2 5 45 8 49 51 | catchom | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> ( x ( Hom ` D ) y ) = ( x Func y ) ) |
| 56 | 54 55 | eleqtrd | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> f e. ( x Func y ) ) |
| 57 | simprr | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> g e. ( y ( Hom ` D ) z ) ) |
|
| 58 | 2 5 45 8 51 53 | catchom | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> ( y ( Hom ` D ) z ) = ( y Func z ) ) |
| 59 | 57 58 | eleqtrd | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> g e. ( y Func z ) ) |
| 60 | 2 5 45 46 49 51 53 56 59 | catcco | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> ( g ( <. x , y >. ( comp ` D ) z ) f ) = ( g o.func f ) ) |
| 61 | 3 | ad2antrr | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> U e. W ) |
| 62 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 63 | 31 | ad2antrr | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> ( V i^i Cat ) C_ ( Base ` C ) ) |
| 64 | 63 47 | sseldd | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> x e. ( Base ` C ) ) |
| 65 | 63 50 | sseldd | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> y e. ( Base ` C ) ) |
| 66 | 63 52 | sseldd | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> z e. ( Base ` C ) ) |
| 67 | 1 16 61 62 64 65 66 56 59 | catcco | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) = ( g o.func f ) ) |
| 68 | 26 62 | ressco | |- ( V e. _V -> ( comp ` C ) = ( comp ` ( C |`s V ) ) ) |
| 69 | 6 68 | syl | |- ( ph -> ( comp ` C ) = ( comp ` ( C |`s V ) ) ) |
| 70 | 69 | ad2antrr | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> ( comp ` C ) = ( comp ` ( C |`s V ) ) ) |
| 71 | 70 | oveqd | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> ( <. x , y >. ( comp ` C ) z ) = ( <. x , y >. ( comp ` ( C |`s V ) ) z ) ) |
| 72 | 71 | oveqd | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) = ( g ( <. x , y >. ( comp ` ( C |`s V ) ) z ) f ) ) |
| 73 | 60 67 72 | 3eqtr2d | |- ( ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) /\ ( f e. ( x ( Hom ` D ) y ) /\ g e. ( y ( Hom ` D ) z ) ) ) -> ( g ( <. x , y >. ( comp ` D ) z ) f ) = ( g ( <. x , y >. ( comp ` ( C |`s V ) ) z ) f ) ) |
| 74 | 73 | ralrimivva | |- ( ( ph /\ ( x e. ( V i^i Cat ) /\ y e. ( V i^i Cat ) /\ z e. ( V i^i Cat ) ) ) -> A. f e. ( x ( Hom ` D ) y ) A. g e. ( y ( Hom ` D ) z ) ( g ( <. x , y >. ( comp ` D ) z ) f ) = ( g ( <. x , y >. ( comp ` ( C |`s V ) ) z ) f ) ) |
| 75 | 74 | ralrimivvva | |- ( ph -> A. x e. ( V i^i Cat ) A. y e. ( V i^i Cat ) A. z e. ( V i^i Cat ) A. f e. ( x ( Hom ` D ) y ) A. g e. ( y ( Hom ` D ) z ) ( g ( <. x , y >. ( comp ` D ) z ) f ) = ( g ( <. x , y >. ( comp ` ( C |`s V ) ) z ) f ) ) |
| 76 | eqid | |- ( comp ` ( C |`s V ) ) = ( comp ` ( C |`s V ) ) |
|
| 77 | 44 | eqcomd | |- ( ph -> ( Homf ` D ) = ( Homf ` ( C |`s V ) ) ) |
| 78 | 46 76 8 42 29 77 | comfeq | |- ( ph -> ( ( comf ` D ) = ( comf ` ( C |`s V ) ) <-> A. x e. ( V i^i Cat ) A. y e. ( V i^i Cat ) A. z e. ( V i^i Cat ) A. f e. ( x ( Hom ` D ) y ) A. g e. ( y ( Hom ` D ) z ) ( g ( <. x , y >. ( comp ` D ) z ) f ) = ( g ( <. x , y >. ( comp ` ( C |`s V ) ) z ) f ) ) ) |
| 79 | 75 78 | mpbird | |- ( ph -> ( comf ` D ) = ( comf ` ( C |`s V ) ) ) |
| 80 | 79 | eqcomd | |- ( ph -> ( comf ` ( C |`s V ) ) = ( comf ` D ) ) |
| 81 | 44 80 | jca | |- ( ph -> ( ( Homf ` ( C |`s V ) ) = ( Homf ` D ) /\ ( comf ` ( C |`s V ) ) = ( comf ` D ) ) ) |