This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for two categories with the same base to have the same hom-sets. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homfeq.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| homfeq.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| homfeq.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | ||
| homfeq.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐷 ) ) | ||
| Assertion | homfeq | ⊢ ( 𝜑 → ( ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐽 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homfeq.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 2 | homfeq.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 3 | homfeq.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
| 4 | homfeq.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐷 ) ) | |
| 5 | eqid | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 7 | 5 6 1 | homffval | ⊢ ( Homf ‘ 𝐶 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑥 𝐻 𝑦 ) ) |
| 8 | eqidd | ⊢ ( 𝜑 → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) | |
| 9 | 3 3 8 | mpoeq123dv | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑥 𝐻 𝑦 ) ) ) |
| 10 | 7 9 | eqtr4id | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) ) |
| 11 | eqid | ⊢ ( Homf ‘ 𝐷 ) = ( Homf ‘ 𝐷 ) | |
| 12 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 13 | 11 12 2 | homffval | ⊢ ( Homf ‘ 𝐷 ) = ( 𝑥 ∈ ( Base ‘ 𝐷 ) , 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 𝐽 𝑦 ) ) |
| 14 | eqidd | ⊢ ( 𝜑 → ( 𝑥 𝐽 𝑦 ) = ( 𝑥 𝐽 𝑦 ) ) | |
| 15 | 4 4 14 | mpoeq123dv | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐽 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐷 ) , 𝑦 ∈ ( Base ‘ 𝐷 ) ↦ ( 𝑥 𝐽 𝑦 ) ) ) |
| 16 | 13 15 | eqtr4id | ⊢ ( 𝜑 → ( Homf ‘ 𝐷 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐽 𝑦 ) ) ) |
| 17 | 10 16 | eqeq12d | ⊢ ( 𝜑 → ( ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐽 𝑦 ) ) ) ) |
| 18 | ovex | ⊢ ( 𝑥 𝐻 𝑦 ) ∈ V | |
| 19 | 18 | rgen2w | ⊢ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐻 𝑦 ) ∈ V |
| 20 | mpo2eqb | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐻 𝑦 ) ∈ V → ( ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐽 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐽 𝑦 ) ) ) | |
| 21 | 19 20 | ax-mp | ⊢ ( ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐻 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 𝐽 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐽 𝑦 ) ) |
| 22 | 17 21 | bitrdi | ⊢ ( 𝜑 → ( ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐽 𝑦 ) ) ) |