This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of _pi / 2 minus a number. (Contributed by Paul Chapman, 24-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coshalfpim | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( ( π / 2 ) − 𝐴 ) ) = ( sin ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 2 | 1 | recni | ⊢ ( π / 2 ) ∈ ℂ |
| 3 | cossub | ⊢ ( ( ( π / 2 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( cos ‘ ( ( π / 2 ) − 𝐴 ) ) = ( ( ( cos ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) + ( ( sin ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) ) ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( ( π / 2 ) − 𝐴 ) ) = ( ( ( cos ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) + ( ( sin ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) ) ) |
| 5 | coshalfpi | ⊢ ( cos ‘ ( π / 2 ) ) = 0 | |
| 6 | 5 | oveq1i | ⊢ ( ( cos ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) = ( 0 · ( cos ‘ 𝐴 ) ) |
| 7 | coscl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) | |
| 8 | 7 | mul02d | ⊢ ( 𝐴 ∈ ℂ → ( 0 · ( cos ‘ 𝐴 ) ) = 0 ) |
| 9 | 6 8 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) = 0 ) |
| 10 | sinhalfpi | ⊢ ( sin ‘ ( π / 2 ) ) = 1 | |
| 11 | 10 | oveq1i | ⊢ ( ( sin ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) = ( 1 · ( sin ‘ 𝐴 ) ) |
| 12 | sincl | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) | |
| 13 | 12 | mullidd | ⊢ ( 𝐴 ∈ ℂ → ( 1 · ( sin ‘ 𝐴 ) ) = ( sin ‘ 𝐴 ) ) |
| 14 | 11 13 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) = ( sin ‘ 𝐴 ) ) |
| 15 | 9 14 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) + ( ( sin ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) ) = ( 0 + ( sin ‘ 𝐴 ) ) ) |
| 16 | 12 | addlidd | ⊢ ( 𝐴 ∈ ℂ → ( 0 + ( sin ‘ 𝐴 ) ) = ( sin ‘ 𝐴 ) ) |
| 17 | 4 15 16 | 3eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( ( π / 2 ) − 𝐴 ) ) = ( sin ‘ 𝐴 ) ) |