This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resinf1o | |- ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( -u 1 [,] 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recosf1o | |- ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) -1-1-onto-> ( -u 1 [,] 1 ) |
|
| 2 | eqid | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) = ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) |
|
| 3 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 4 | neghalfpire | |- -u ( _pi / 2 ) e. RR |
|
| 5 | iccssre | |- ( ( -u ( _pi / 2 ) e. RR /\ ( _pi / 2 ) e. RR ) -> ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) C_ RR ) |
|
| 6 | 4 3 5 | mp2an | |- ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) C_ RR |
| 7 | 6 | sseli | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> x e. RR ) |
| 8 | resubcl | |- ( ( ( _pi / 2 ) e. RR /\ x e. RR ) -> ( ( _pi / 2 ) - x ) e. RR ) |
|
| 9 | 3 7 8 | sylancr | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - x ) e. RR ) |
| 10 | 4 3 | elicc2i | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( x e. RR /\ -u ( _pi / 2 ) <_ x /\ x <_ ( _pi / 2 ) ) ) |
| 11 | 10 | simp3bi | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> x <_ ( _pi / 2 ) ) |
| 12 | subge0 | |- ( ( ( _pi / 2 ) e. RR /\ x e. RR ) -> ( 0 <_ ( ( _pi / 2 ) - x ) <-> x <_ ( _pi / 2 ) ) ) |
|
| 13 | 3 7 12 | sylancr | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( 0 <_ ( ( _pi / 2 ) - x ) <-> x <_ ( _pi / 2 ) ) ) |
| 14 | 11 13 | mpbird | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> 0 <_ ( ( _pi / 2 ) - x ) ) |
| 15 | 3 | recni | |- ( _pi / 2 ) e. CC |
| 16 | picn | |- _pi e. CC |
|
| 17 | 15 | negcli | |- -u ( _pi / 2 ) e. CC |
| 18 | 16 15 | negsubi | |- ( _pi + -u ( _pi / 2 ) ) = ( _pi - ( _pi / 2 ) ) |
| 19 | pidiv2halves | |- ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi |
|
| 20 | 16 15 15 19 | subaddrii | |- ( _pi - ( _pi / 2 ) ) = ( _pi / 2 ) |
| 21 | 18 20 | eqtri | |- ( _pi + -u ( _pi / 2 ) ) = ( _pi / 2 ) |
| 22 | 15 16 17 21 | subaddrii | |- ( ( _pi / 2 ) - _pi ) = -u ( _pi / 2 ) |
| 23 | 10 | simp2bi | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> -u ( _pi / 2 ) <_ x ) |
| 24 | 22 23 | eqbrtrid | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - _pi ) <_ x ) |
| 25 | pire | |- _pi e. RR |
|
| 26 | suble | |- ( ( ( _pi / 2 ) e. RR /\ _pi e. RR /\ x e. RR ) -> ( ( ( _pi / 2 ) - _pi ) <_ x <-> ( ( _pi / 2 ) - x ) <_ _pi ) ) |
|
| 27 | 3 25 7 26 | mp3an12i | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( ( _pi / 2 ) - _pi ) <_ x <-> ( ( _pi / 2 ) - x ) <_ _pi ) ) |
| 28 | 24 27 | mpbid | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - x ) <_ _pi ) |
| 29 | 0re | |- 0 e. RR |
|
| 30 | 29 25 | elicc2i | |- ( ( ( _pi / 2 ) - x ) e. ( 0 [,] _pi ) <-> ( ( ( _pi / 2 ) - x ) e. RR /\ 0 <_ ( ( _pi / 2 ) - x ) /\ ( ( _pi / 2 ) - x ) <_ _pi ) ) |
| 31 | 9 14 28 30 | syl3anbrc | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( _pi / 2 ) - x ) e. ( 0 [,] _pi ) ) |
| 32 | 31 | adantl | |- ( ( T. /\ x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) -> ( ( _pi / 2 ) - x ) e. ( 0 [,] _pi ) ) |
| 33 | 29 25 | elicc2i | |- ( y e. ( 0 [,] _pi ) <-> ( y e. RR /\ 0 <_ y /\ y <_ _pi ) ) |
| 34 | 33 | simp1bi | |- ( y e. ( 0 [,] _pi ) -> y e. RR ) |
| 35 | resubcl | |- ( ( ( _pi / 2 ) e. RR /\ y e. RR ) -> ( ( _pi / 2 ) - y ) e. RR ) |
|
| 36 | 3 34 35 | sylancr | |- ( y e. ( 0 [,] _pi ) -> ( ( _pi / 2 ) - y ) e. RR ) |
| 37 | 33 | simp3bi | |- ( y e. ( 0 [,] _pi ) -> y <_ _pi ) |
| 38 | 15 15 | subnegi | |- ( ( _pi / 2 ) - -u ( _pi / 2 ) ) = ( ( _pi / 2 ) + ( _pi / 2 ) ) |
| 39 | 38 19 | eqtri | |- ( ( _pi / 2 ) - -u ( _pi / 2 ) ) = _pi |
| 40 | 37 39 | breqtrrdi | |- ( y e. ( 0 [,] _pi ) -> y <_ ( ( _pi / 2 ) - -u ( _pi / 2 ) ) ) |
| 41 | lesub | |- ( ( y e. RR /\ ( _pi / 2 ) e. RR /\ -u ( _pi / 2 ) e. RR ) -> ( y <_ ( ( _pi / 2 ) - -u ( _pi / 2 ) ) <-> -u ( _pi / 2 ) <_ ( ( _pi / 2 ) - y ) ) ) |
|
| 42 | 3 4 41 | mp3an23 | |- ( y e. RR -> ( y <_ ( ( _pi / 2 ) - -u ( _pi / 2 ) ) <-> -u ( _pi / 2 ) <_ ( ( _pi / 2 ) - y ) ) ) |
| 43 | 34 42 | syl | |- ( y e. ( 0 [,] _pi ) -> ( y <_ ( ( _pi / 2 ) - -u ( _pi / 2 ) ) <-> -u ( _pi / 2 ) <_ ( ( _pi / 2 ) - y ) ) ) |
| 44 | 40 43 | mpbid | |- ( y e. ( 0 [,] _pi ) -> -u ( _pi / 2 ) <_ ( ( _pi / 2 ) - y ) ) |
| 45 | 15 | subidi | |- ( ( _pi / 2 ) - ( _pi / 2 ) ) = 0 |
| 46 | 33 | simp2bi | |- ( y e. ( 0 [,] _pi ) -> 0 <_ y ) |
| 47 | 45 46 | eqbrtrid | |- ( y e. ( 0 [,] _pi ) -> ( ( _pi / 2 ) - ( _pi / 2 ) ) <_ y ) |
| 48 | suble | |- ( ( ( _pi / 2 ) e. RR /\ ( _pi / 2 ) e. RR /\ y e. RR ) -> ( ( ( _pi / 2 ) - ( _pi / 2 ) ) <_ y <-> ( ( _pi / 2 ) - y ) <_ ( _pi / 2 ) ) ) |
|
| 49 | 3 3 34 48 | mp3an12i | |- ( y e. ( 0 [,] _pi ) -> ( ( ( _pi / 2 ) - ( _pi / 2 ) ) <_ y <-> ( ( _pi / 2 ) - y ) <_ ( _pi / 2 ) ) ) |
| 50 | 47 49 | mpbid | |- ( y e. ( 0 [,] _pi ) -> ( ( _pi / 2 ) - y ) <_ ( _pi / 2 ) ) |
| 51 | 4 3 | elicc2i | |- ( ( ( _pi / 2 ) - y ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) <-> ( ( ( _pi / 2 ) - y ) e. RR /\ -u ( _pi / 2 ) <_ ( ( _pi / 2 ) - y ) /\ ( ( _pi / 2 ) - y ) <_ ( _pi / 2 ) ) ) |
| 52 | 36 44 50 51 | syl3anbrc | |- ( y e. ( 0 [,] _pi ) -> ( ( _pi / 2 ) - y ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 53 | 52 | adantl | |- ( ( T. /\ y e. ( 0 [,] _pi ) ) -> ( ( _pi / 2 ) - y ) e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 54 | iccssre | |- ( ( 0 e. RR /\ _pi e. RR ) -> ( 0 [,] _pi ) C_ RR ) |
|
| 55 | 29 25 54 | mp2an | |- ( 0 [,] _pi ) C_ RR |
| 56 | ax-resscn | |- RR C_ CC |
|
| 57 | 55 56 | sstri | |- ( 0 [,] _pi ) C_ CC |
| 58 | 57 | sseli | |- ( y e. ( 0 [,] _pi ) -> y e. CC ) |
| 59 | 6 56 | sstri | |- ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) C_ CC |
| 60 | 59 | sseli | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> x e. CC ) |
| 61 | subsub23 | |- ( ( ( _pi / 2 ) e. CC /\ y e. CC /\ x e. CC ) -> ( ( ( _pi / 2 ) - y ) = x <-> ( ( _pi / 2 ) - x ) = y ) ) |
|
| 62 | 15 61 | mp3an1 | |- ( ( y e. CC /\ x e. CC ) -> ( ( ( _pi / 2 ) - y ) = x <-> ( ( _pi / 2 ) - x ) = y ) ) |
| 63 | 58 60 62 | syl2anr | |- ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) /\ y e. ( 0 [,] _pi ) ) -> ( ( ( _pi / 2 ) - y ) = x <-> ( ( _pi / 2 ) - x ) = y ) ) |
| 64 | 63 | adantl | |- ( ( T. /\ ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) /\ y e. ( 0 [,] _pi ) ) ) -> ( ( ( _pi / 2 ) - y ) = x <-> ( ( _pi / 2 ) - x ) = y ) ) |
| 65 | eqcom | |- ( x = ( ( _pi / 2 ) - y ) <-> ( ( _pi / 2 ) - y ) = x ) |
|
| 66 | eqcom | |- ( y = ( ( _pi / 2 ) - x ) <-> ( ( _pi / 2 ) - x ) = y ) |
|
| 67 | 64 65 66 | 3bitr4g | |- ( ( T. /\ ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) /\ y e. ( 0 [,] _pi ) ) ) -> ( x = ( ( _pi / 2 ) - y ) <-> y = ( ( _pi / 2 ) - x ) ) ) |
| 68 | 2 32 53 67 | f1o2d | |- ( T. -> ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( 0 [,] _pi ) ) |
| 69 | 68 | mptru | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( 0 [,] _pi ) |
| 70 | f1oco | |- ( ( ( cos |` ( 0 [,] _pi ) ) : ( 0 [,] _pi ) -1-1-onto-> ( -u 1 [,] 1 ) /\ ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( 0 [,] _pi ) ) -> ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( -u 1 [,] 1 ) ) |
|
| 71 | 1 69 70 | mp2an | |- ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( -u 1 [,] 1 ) |
| 72 | cosf | |- cos : CC --> CC |
|
| 73 | ffn | |- ( cos : CC --> CC -> cos Fn CC ) |
|
| 74 | 72 73 | ax-mp | |- cos Fn CC |
| 75 | fnssres | |- ( ( cos Fn CC /\ ( 0 [,] _pi ) C_ CC ) -> ( cos |` ( 0 [,] _pi ) ) Fn ( 0 [,] _pi ) ) |
|
| 76 | 74 57 75 | mp2an | |- ( cos |` ( 0 [,] _pi ) ) Fn ( 0 [,] _pi ) |
| 77 | 2 31 | fmpti | |- ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) --> ( 0 [,] _pi ) |
| 78 | fnfco | |- ( ( ( cos |` ( 0 [,] _pi ) ) Fn ( 0 [,] _pi ) /\ ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) --> ( 0 [,] _pi ) ) -> ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) Fn ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
|
| 79 | 76 77 78 | mp2an | |- ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) Fn ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |
| 80 | sinf | |- sin : CC --> CC |
|
| 81 | ffn | |- ( sin : CC --> CC -> sin Fn CC ) |
|
| 82 | 80 81 | ax-mp | |- sin Fn CC |
| 83 | fnssres | |- ( ( sin Fn CC /\ ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) C_ CC ) -> ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) Fn ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
|
| 84 | 82 59 83 | mp2an | |- ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) Fn ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |
| 85 | eqfnfv | |- ( ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) Fn ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) /\ ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) Fn ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) -> ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) = ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) <-> A. y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) ` y ) = ( ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` y ) ) ) |
|
| 86 | 79 84 85 | mp2an | |- ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) = ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) <-> A. y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) ` y ) = ( ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` y ) ) |
| 87 | 77 | ffvelcdmi | |- ( y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ` y ) e. ( 0 [,] _pi ) ) |
| 88 | 87 | fvresd | |- ( y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( cos |` ( 0 [,] _pi ) ) ` ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ` y ) ) = ( cos ` ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ` y ) ) ) |
| 89 | oveq2 | |- ( x = y -> ( ( _pi / 2 ) - x ) = ( ( _pi / 2 ) - y ) ) |
|
| 90 | ovex | |- ( ( _pi / 2 ) - y ) e. _V |
|
| 91 | 89 2 90 | fvmpt | |- ( y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ` y ) = ( ( _pi / 2 ) - y ) ) |
| 92 | 91 | fveq2d | |- ( y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( cos ` ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ` y ) ) = ( cos ` ( ( _pi / 2 ) - y ) ) ) |
| 93 | 59 | sseli | |- ( y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> y e. CC ) |
| 94 | coshalfpim | |- ( y e. CC -> ( cos ` ( ( _pi / 2 ) - y ) ) = ( sin ` y ) ) |
|
| 95 | 93 94 | syl | |- ( y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( cos ` ( ( _pi / 2 ) - y ) ) = ( sin ` y ) ) |
| 96 | 88 92 95 | 3eqtrd | |- ( y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( cos |` ( 0 [,] _pi ) ) ` ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ` y ) ) = ( sin ` y ) ) |
| 97 | fvco3 | |- ( ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) --> ( 0 [,] _pi ) /\ y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) -> ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) ` y ) = ( ( cos |` ( 0 [,] _pi ) ) ` ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ` y ) ) ) |
|
| 98 | 77 97 | mpan | |- ( y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) ` y ) = ( ( cos |` ( 0 [,] _pi ) ) ` ( ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ` y ) ) ) |
| 99 | fvres | |- ( y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` y ) = ( sin ` y ) ) |
|
| 100 | 96 98 99 | 3eqtr4d | |- ( y e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -> ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) ` y ) = ( ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) ` y ) ) |
| 101 | 86 100 | mprgbir | |- ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) = ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) |
| 102 | f1oeq1 | |- ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) = ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) -> ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( -u 1 [,] 1 ) <-> ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( -u 1 [,] 1 ) ) ) |
|
| 103 | 101 102 | ax-mp | |- ( ( ( cos |` ( 0 [,] _pi ) ) o. ( x e. ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) |-> ( ( _pi / 2 ) - x ) ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( -u 1 [,] 1 ) <-> ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( -u 1 [,] 1 ) ) |
| 104 | 71 103 | mpbi | |- ( sin |` ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) ) : ( -u ( _pi / 2 ) [,] ( _pi / 2 ) ) -1-1-onto-> ( -u 1 [,] 1 ) |