This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap subtrahend and result of subtraction. (Contributed by NM, 14-Dec-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subsub23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐴 − 𝐶 ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcom | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) ) | |
| 2 | 1 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 + 𝐶 ) = ( 𝐶 + 𝐵 ) ) |
| 3 | 2 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 + 𝐶 ) = 𝐴 ↔ ( 𝐶 + 𝐵 ) = 𝐴 ) ) |
| 4 | subadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐵 + 𝐶 ) = 𝐴 ) ) | |
| 5 | subadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) = 𝐵 ↔ ( 𝐶 + 𝐵 ) = 𝐴 ) ) | |
| 6 | 5 | 3com23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐶 ) = 𝐵 ↔ ( 𝐶 + 𝐵 ) = 𝐴 ) ) |
| 7 | 3 4 6 | 3bitr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) = 𝐶 ↔ ( 𝐴 − 𝐶 ) = 𝐵 ) ) |