This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recosf1o | ⊢ ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) –1-1-onto→ ( - 1 [,] 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosf | ⊢ cos : ℂ ⟶ ℂ | |
| 2 | ffn | ⊢ ( cos : ℂ ⟶ ℂ → cos Fn ℂ ) | |
| 3 | 1 2 | ax-mp | ⊢ cos Fn ℂ |
| 4 | 0re | ⊢ 0 ∈ ℝ | |
| 5 | pire | ⊢ π ∈ ℝ | |
| 6 | iccssre | ⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ) → ( 0 [,] π ) ⊆ ℝ ) | |
| 7 | 4 5 6 | mp2an | ⊢ ( 0 [,] π ) ⊆ ℝ |
| 8 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 9 | 7 8 | sstri | ⊢ ( 0 [,] π ) ⊆ ℂ |
| 10 | fnssres | ⊢ ( ( cos Fn ℂ ∧ ( 0 [,] π ) ⊆ ℂ ) → ( cos ↾ ( 0 [,] π ) ) Fn ( 0 [,] π ) ) | |
| 11 | 3 9 10 | mp2an | ⊢ ( cos ↾ ( 0 [,] π ) ) Fn ( 0 [,] π ) |
| 12 | fvres | ⊢ ( 𝑥 ∈ ( 0 [,] π ) → ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑥 ) = ( cos ‘ 𝑥 ) ) | |
| 13 | 7 | sseli | ⊢ ( 𝑥 ∈ ( 0 [,] π ) → 𝑥 ∈ ℝ ) |
| 14 | cosbnd2 | ⊢ ( 𝑥 ∈ ℝ → ( cos ‘ 𝑥 ) ∈ ( - 1 [,] 1 ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝑥 ∈ ( 0 [,] π ) → ( cos ‘ 𝑥 ) ∈ ( - 1 [,] 1 ) ) |
| 16 | 12 15 | eqeltrd | ⊢ ( 𝑥 ∈ ( 0 [,] π ) → ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑥 ) ∈ ( - 1 [,] 1 ) ) |
| 17 | 16 | rgen | ⊢ ∀ 𝑥 ∈ ( 0 [,] π ) ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑥 ) ∈ ( - 1 [,] 1 ) |
| 18 | ffnfv | ⊢ ( ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) ⟶ ( - 1 [,] 1 ) ↔ ( ( cos ↾ ( 0 [,] π ) ) Fn ( 0 [,] π ) ∧ ∀ 𝑥 ∈ ( 0 [,] π ) ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑥 ) ∈ ( - 1 [,] 1 ) ) ) | |
| 19 | 11 17 18 | mpbir2an | ⊢ ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) ⟶ ( - 1 [,] 1 ) |
| 20 | fvres | ⊢ ( 𝑦 ∈ ( 0 [,] π ) → ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) = ( cos ‘ 𝑦 ) ) | |
| 21 | 12 20 | eqeqan12d | ⊢ ( ( 𝑥 ∈ ( 0 [,] π ) ∧ 𝑦 ∈ ( 0 [,] π ) ) → ( ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑥 ) = ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) ↔ ( cos ‘ 𝑥 ) = ( cos ‘ 𝑦 ) ) ) |
| 22 | cos11 | ⊢ ( ( 𝑥 ∈ ( 0 [,] π ) ∧ 𝑦 ∈ ( 0 [,] π ) ) → ( 𝑥 = 𝑦 ↔ ( cos ‘ 𝑥 ) = ( cos ‘ 𝑦 ) ) ) | |
| 23 | 22 | biimprd | ⊢ ( ( 𝑥 ∈ ( 0 [,] π ) ∧ 𝑦 ∈ ( 0 [,] π ) ) → ( ( cos ‘ 𝑥 ) = ( cos ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 24 | 21 23 | sylbid | ⊢ ( ( 𝑥 ∈ ( 0 [,] π ) ∧ 𝑦 ∈ ( 0 [,] π ) ) → ( ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑥 ) = ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 25 | 24 | rgen2 | ⊢ ∀ 𝑥 ∈ ( 0 [,] π ) ∀ 𝑦 ∈ ( 0 [,] π ) ( ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑥 ) = ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) |
| 26 | dff13 | ⊢ ( ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) –1-1→ ( - 1 [,] 1 ) ↔ ( ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) ⟶ ( - 1 [,] 1 ) ∧ ∀ 𝑥 ∈ ( 0 [,] π ) ∀ 𝑦 ∈ ( 0 [,] π ) ( ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑥 ) = ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 27 | 19 25 26 | mpbir2an | ⊢ ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) –1-1→ ( - 1 [,] 1 ) |
| 28 | 4 | a1i | ⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → 0 ∈ ℝ ) |
| 29 | 5 | a1i | ⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → π ∈ ℝ ) |
| 30 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 31 | 1re | ⊢ 1 ∈ ℝ | |
| 32 | 30 31 | elicc2i | ⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) ↔ ( 𝑥 ∈ ℝ ∧ - 1 ≤ 𝑥 ∧ 𝑥 ≤ 1 ) ) |
| 33 | 32 | simp1bi | ⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → 𝑥 ∈ ℝ ) |
| 34 | pipos | ⊢ 0 < π | |
| 35 | 34 | a1i | ⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → 0 < π ) |
| 36 | 9 | a1i | ⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → ( 0 [,] π ) ⊆ ℂ ) |
| 37 | coscn | ⊢ cos ∈ ( ℂ –cn→ ℂ ) | |
| 38 | 37 | a1i | ⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → cos ∈ ( ℂ –cn→ ℂ ) ) |
| 39 | 7 | sseli | ⊢ ( 𝑧 ∈ ( 0 [,] π ) → 𝑧 ∈ ℝ ) |
| 40 | 39 | recoscld | ⊢ ( 𝑧 ∈ ( 0 [,] π ) → ( cos ‘ 𝑧 ) ∈ ℝ ) |
| 41 | 40 | adantl | ⊢ ( ( 𝑥 ∈ ( - 1 [,] 1 ) ∧ 𝑧 ∈ ( 0 [,] π ) ) → ( cos ‘ 𝑧 ) ∈ ℝ ) |
| 42 | cospi | ⊢ ( cos ‘ π ) = - 1 | |
| 43 | 32 | simp2bi | ⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → - 1 ≤ 𝑥 ) |
| 44 | 42 43 | eqbrtrid | ⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → ( cos ‘ π ) ≤ 𝑥 ) |
| 45 | 32 | simp3bi | ⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → 𝑥 ≤ 1 ) |
| 46 | cos0 | ⊢ ( cos ‘ 0 ) = 1 | |
| 47 | 45 46 | breqtrrdi | ⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → 𝑥 ≤ ( cos ‘ 0 ) ) |
| 48 | 44 47 | jca | ⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → ( ( cos ‘ π ) ≤ 𝑥 ∧ 𝑥 ≤ ( cos ‘ 0 ) ) ) |
| 49 | 28 29 33 35 36 38 41 48 | ivthle2 | ⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → ∃ 𝑦 ∈ ( 0 [,] π ) ( cos ‘ 𝑦 ) = 𝑥 ) |
| 50 | eqcom | ⊢ ( 𝑥 = ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) ↔ ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) = 𝑥 ) | |
| 51 | 20 | eqeq1d | ⊢ ( 𝑦 ∈ ( 0 [,] π ) → ( ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) = 𝑥 ↔ ( cos ‘ 𝑦 ) = 𝑥 ) ) |
| 52 | 50 51 | bitrid | ⊢ ( 𝑦 ∈ ( 0 [,] π ) → ( 𝑥 = ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) ↔ ( cos ‘ 𝑦 ) = 𝑥 ) ) |
| 53 | 52 | rexbiia | ⊢ ( ∃ 𝑦 ∈ ( 0 [,] π ) 𝑥 = ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ ( 0 [,] π ) ( cos ‘ 𝑦 ) = 𝑥 ) |
| 54 | 49 53 | sylibr | ⊢ ( 𝑥 ∈ ( - 1 [,] 1 ) → ∃ 𝑦 ∈ ( 0 [,] π ) 𝑥 = ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) ) |
| 55 | 54 | rgen | ⊢ ∀ 𝑥 ∈ ( - 1 [,] 1 ) ∃ 𝑦 ∈ ( 0 [,] π ) 𝑥 = ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) |
| 56 | dffo3 | ⊢ ( ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) –onto→ ( - 1 [,] 1 ) ↔ ( ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) ⟶ ( - 1 [,] 1 ) ∧ ∀ 𝑥 ∈ ( - 1 [,] 1 ) ∃ 𝑦 ∈ ( 0 [,] π ) 𝑥 = ( ( cos ↾ ( 0 [,] π ) ) ‘ 𝑦 ) ) ) | |
| 57 | 19 55 56 | mpbir2an | ⊢ ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) –onto→ ( - 1 [,] 1 ) |
| 58 | df-f1o | ⊢ ( ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) –1-1-onto→ ( - 1 [,] 1 ) ↔ ( ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) –1-1→ ( - 1 [,] 1 ) ∧ ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) –onto→ ( - 1 [,] 1 ) ) ) | |
| 59 | 27 57 58 | mpbir2an | ⊢ ( cos ↾ ( 0 [,] π ) ) : ( 0 [,] π ) –1-1-onto→ ( - 1 [,] 1 ) |