This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain and codomain of the sine function. (Contributed by Paul Chapman, 22-Oct-2007) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinf | ⊢ sin : ℂ ⟶ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sin | ⊢ sin = ( 𝑥 ∈ ℂ ↦ ( ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) / ( 2 · i ) ) ) | |
| 2 | ax-icn | ⊢ i ∈ ℂ | |
| 3 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( i · 𝑥 ) ∈ ℂ ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝑥 ∈ ℂ → ( i · 𝑥 ) ∈ ℂ ) |
| 5 | efcl | ⊢ ( ( i · 𝑥 ) ∈ ℂ → ( exp ‘ ( i · 𝑥 ) ) ∈ ℂ ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑥 ∈ ℂ → ( exp ‘ ( i · 𝑥 ) ) ∈ ℂ ) |
| 7 | negicn | ⊢ - i ∈ ℂ | |
| 8 | mulcl | ⊢ ( ( - i ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( - i · 𝑥 ) ∈ ℂ ) | |
| 9 | 7 8 | mpan | ⊢ ( 𝑥 ∈ ℂ → ( - i · 𝑥 ) ∈ ℂ ) |
| 10 | efcl | ⊢ ( ( - i · 𝑥 ) ∈ ℂ → ( exp ‘ ( - i · 𝑥 ) ) ∈ ℂ ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑥 ∈ ℂ → ( exp ‘ ( - i · 𝑥 ) ) ∈ ℂ ) |
| 12 | 6 11 | subcld | ⊢ ( 𝑥 ∈ ℂ → ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) ∈ ℂ ) |
| 13 | 2mulicn | ⊢ ( 2 · i ) ∈ ℂ | |
| 14 | 2muline0 | ⊢ ( 2 · i ) ≠ 0 | |
| 15 | divcl | ⊢ ( ( ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) ∈ ℂ ∧ ( 2 · i ) ∈ ℂ ∧ ( 2 · i ) ≠ 0 ) → ( ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) / ( 2 · i ) ) ∈ ℂ ) | |
| 16 | 13 14 15 | mp3an23 | ⊢ ( ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) ∈ ℂ → ( ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) / ( 2 · i ) ) ∈ ℂ ) |
| 17 | 12 16 | syl | ⊢ ( 𝑥 ∈ ℂ → ( ( ( exp ‘ ( i · 𝑥 ) ) − ( exp ‘ ( - i · 𝑥 ) ) ) / ( 2 · i ) ) ∈ ℂ ) |
| 18 | 1 17 | fmpti | ⊢ sin : ℂ ⟶ ℂ |