This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of the real numbers that is closed under addition with real numbers is perfect. (Contributed by Mario Carneiro, 26-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | recld2.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| reperflem.2 | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ ℝ ) → ( 𝑢 + 𝑣 ) ∈ 𝑆 ) | ||
| reperflem.3 | ⊢ 𝑆 ⊆ ℂ | ||
| Assertion | reperflem | ⊢ ( 𝐽 ↾t 𝑆 ) ∈ Perf |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld2.1 | ⊢ 𝐽 = ( TopOpen ‘ ℂfld ) | |
| 2 | reperflem.2 | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ ℝ ) → ( 𝑢 + 𝑣 ) ∈ 𝑆 ) | |
| 3 | reperflem.3 | ⊢ 𝑆 ⊆ ℂ | |
| 4 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 5 | 3 | sseli | ⊢ ( 𝑢 ∈ 𝑆 → 𝑢 ∈ ℂ ) |
| 6 | 1 | cnfldtopn | ⊢ 𝐽 = ( MetOpen ‘ ( abs ∘ − ) ) |
| 7 | 6 | neibl | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝑢 ∈ ℂ ) → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑢 } ) ↔ ( 𝑛 ⊆ ℂ ∧ ∃ 𝑟 ∈ ℝ+ ( 𝑢 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑛 ) ) ) |
| 8 | 4 5 7 | sylancr | ⊢ ( 𝑢 ∈ 𝑆 → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑢 } ) ↔ ( 𝑛 ⊆ ℂ ∧ ∃ 𝑟 ∈ ℝ+ ( 𝑢 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑛 ) ) ) |
| 9 | ssrin | ⊢ ( ( 𝑢 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑛 → ( ( 𝑢 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ ( 𝑆 ∖ { 𝑢 } ) ) ⊆ ( 𝑛 ∩ ( 𝑆 ∖ { 𝑢 } ) ) ) | |
| 10 | 2 | ralrimiva | ⊢ ( 𝑢 ∈ 𝑆 → ∀ 𝑣 ∈ ℝ ( 𝑢 + 𝑣 ) ∈ 𝑆 ) |
| 11 | rpre | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ ) | |
| 12 | 11 | rehalfcld | ⊢ ( 𝑟 ∈ ℝ+ → ( 𝑟 / 2 ) ∈ ℝ ) |
| 13 | oveq2 | ⊢ ( 𝑣 = ( 𝑟 / 2 ) → ( 𝑢 + 𝑣 ) = ( 𝑢 + ( 𝑟 / 2 ) ) ) | |
| 14 | 13 | eleq1d | ⊢ ( 𝑣 = ( 𝑟 / 2 ) → ( ( 𝑢 + 𝑣 ) ∈ 𝑆 ↔ ( 𝑢 + ( 𝑟 / 2 ) ) ∈ 𝑆 ) ) |
| 15 | 14 | rspccva | ⊢ ( ( ∀ 𝑣 ∈ ℝ ( 𝑢 + 𝑣 ) ∈ 𝑆 ∧ ( 𝑟 / 2 ) ∈ ℝ ) → ( 𝑢 + ( 𝑟 / 2 ) ) ∈ 𝑆 ) |
| 16 | 10 12 15 | syl2an | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → ( 𝑢 + ( 𝑟 / 2 ) ) ∈ 𝑆 ) |
| 17 | 3 16 | sselid | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → ( 𝑢 + ( 𝑟 / 2 ) ) ∈ ℂ ) |
| 18 | 5 | adantr | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → 𝑢 ∈ ℂ ) |
| 19 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 20 | 19 | cnmetdval | ⊢ ( ( ( 𝑢 + ( 𝑟 / 2 ) ) ∈ ℂ ∧ 𝑢 ∈ ℂ ) → ( ( 𝑢 + ( 𝑟 / 2 ) ) ( abs ∘ − ) 𝑢 ) = ( abs ‘ ( ( 𝑢 + ( 𝑟 / 2 ) ) − 𝑢 ) ) ) |
| 21 | 17 18 20 | syl2anc | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑢 + ( 𝑟 / 2 ) ) ( abs ∘ − ) 𝑢 ) = ( abs ‘ ( ( 𝑢 + ( 𝑟 / 2 ) ) − 𝑢 ) ) ) |
| 22 | simpr | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ+ ) | |
| 23 | 22 | rphalfcld | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → ( 𝑟 / 2 ) ∈ ℝ+ ) |
| 24 | 23 | rpcnd | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → ( 𝑟 / 2 ) ∈ ℂ ) |
| 25 | 18 24 | pncan2d | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑢 + ( 𝑟 / 2 ) ) − 𝑢 ) = ( 𝑟 / 2 ) ) |
| 26 | 25 | fveq2d | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → ( abs ‘ ( ( 𝑢 + ( 𝑟 / 2 ) ) − 𝑢 ) ) = ( abs ‘ ( 𝑟 / 2 ) ) ) |
| 27 | 23 | rpred | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → ( 𝑟 / 2 ) ∈ ℝ ) |
| 28 | 23 | rpge0d | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → 0 ≤ ( 𝑟 / 2 ) ) |
| 29 | 27 28 | absidd | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → ( abs ‘ ( 𝑟 / 2 ) ) = ( 𝑟 / 2 ) ) |
| 30 | 21 26 29 | 3eqtrd | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑢 + ( 𝑟 / 2 ) ) ( abs ∘ − ) 𝑢 ) = ( 𝑟 / 2 ) ) |
| 31 | rphalflt | ⊢ ( 𝑟 ∈ ℝ+ → ( 𝑟 / 2 ) < 𝑟 ) | |
| 32 | 31 | adantl | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → ( 𝑟 / 2 ) < 𝑟 ) |
| 33 | 30 32 | eqbrtrd | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑢 + ( 𝑟 / 2 ) ) ( abs ∘ − ) 𝑢 ) < 𝑟 ) |
| 34 | 4 | a1i | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ) |
| 35 | rpxr | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) | |
| 36 | 35 | adantl | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ* ) |
| 37 | elbl3 | ⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 𝑟 ∈ ℝ* ) ∧ ( 𝑢 ∈ ℂ ∧ ( 𝑢 + ( 𝑟 / 2 ) ) ∈ ℂ ) ) → ( ( 𝑢 + ( 𝑟 / 2 ) ) ∈ ( 𝑢 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ↔ ( ( 𝑢 + ( 𝑟 / 2 ) ) ( abs ∘ − ) 𝑢 ) < 𝑟 ) ) | |
| 38 | 34 36 18 17 37 | syl22anc | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑢 + ( 𝑟 / 2 ) ) ∈ ( 𝑢 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ↔ ( ( 𝑢 + ( 𝑟 / 2 ) ) ( abs ∘ − ) 𝑢 ) < 𝑟 ) ) |
| 39 | 33 38 | mpbird | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → ( 𝑢 + ( 𝑟 / 2 ) ) ∈ ( 𝑢 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ) |
| 40 | 23 | rpne0d | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → ( 𝑟 / 2 ) ≠ 0 ) |
| 41 | 25 40 | eqnetrd | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑢 + ( 𝑟 / 2 ) ) − 𝑢 ) ≠ 0 ) |
| 42 | 17 18 41 | subne0ad | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → ( 𝑢 + ( 𝑟 / 2 ) ) ≠ 𝑢 ) |
| 43 | eldifsn | ⊢ ( ( 𝑢 + ( 𝑟 / 2 ) ) ∈ ( 𝑆 ∖ { 𝑢 } ) ↔ ( ( 𝑢 + ( 𝑟 / 2 ) ) ∈ 𝑆 ∧ ( 𝑢 + ( 𝑟 / 2 ) ) ≠ 𝑢 ) ) | |
| 44 | 16 42 43 | sylanbrc | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → ( 𝑢 + ( 𝑟 / 2 ) ) ∈ ( 𝑆 ∖ { 𝑢 } ) ) |
| 45 | inelcm | ⊢ ( ( ( 𝑢 + ( 𝑟 / 2 ) ) ∈ ( 𝑢 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∧ ( 𝑢 + ( 𝑟 / 2 ) ) ∈ ( 𝑆 ∖ { 𝑢 } ) ) → ( ( 𝑢 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ ( 𝑆 ∖ { 𝑢 } ) ) ≠ ∅ ) | |
| 46 | 39 44 45 | syl2anc | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑢 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ ( 𝑆 ∖ { 𝑢 } ) ) ≠ ∅ ) |
| 47 | ssn0 | ⊢ ( ( ( ( 𝑢 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ ( 𝑆 ∖ { 𝑢 } ) ) ⊆ ( 𝑛 ∩ ( 𝑆 ∖ { 𝑢 } ) ) ∧ ( ( 𝑢 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ ( 𝑆 ∖ { 𝑢 } ) ) ≠ ∅ ) → ( 𝑛 ∩ ( 𝑆 ∖ { 𝑢 } ) ) ≠ ∅ ) | |
| 48 | 47 | ex | ⊢ ( ( ( 𝑢 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ ( 𝑆 ∖ { 𝑢 } ) ) ⊆ ( 𝑛 ∩ ( 𝑆 ∖ { 𝑢 } ) ) → ( ( ( 𝑢 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ∩ ( 𝑆 ∖ { 𝑢 } ) ) ≠ ∅ → ( 𝑛 ∩ ( 𝑆 ∖ { 𝑢 } ) ) ≠ ∅ ) ) |
| 49 | 9 46 48 | syl2imc | ⊢ ( ( 𝑢 ∈ 𝑆 ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑢 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑛 → ( 𝑛 ∩ ( 𝑆 ∖ { 𝑢 } ) ) ≠ ∅ ) ) |
| 50 | 49 | rexlimdva | ⊢ ( 𝑢 ∈ 𝑆 → ( ∃ 𝑟 ∈ ℝ+ ( 𝑢 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑛 → ( 𝑛 ∩ ( 𝑆 ∖ { 𝑢 } ) ) ≠ ∅ ) ) |
| 51 | 50 | adantld | ⊢ ( 𝑢 ∈ 𝑆 → ( ( 𝑛 ⊆ ℂ ∧ ∃ 𝑟 ∈ ℝ+ ( 𝑢 ( ball ‘ ( abs ∘ − ) ) 𝑟 ) ⊆ 𝑛 ) → ( 𝑛 ∩ ( 𝑆 ∖ { 𝑢 } ) ) ≠ ∅ ) ) |
| 52 | 8 51 | sylbid | ⊢ ( 𝑢 ∈ 𝑆 → ( 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑢 } ) → ( 𝑛 ∩ ( 𝑆 ∖ { 𝑢 } ) ) ≠ ∅ ) ) |
| 53 | 52 | ralrimiv | ⊢ ( 𝑢 ∈ 𝑆 → ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑢 } ) ( 𝑛 ∩ ( 𝑆 ∖ { 𝑢 } ) ) ≠ ∅ ) |
| 54 | 1 | cnfldtop | ⊢ 𝐽 ∈ Top |
| 55 | 1 | cnfldtopon | ⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 56 | 55 | toponunii | ⊢ ℂ = ∪ 𝐽 |
| 57 | 56 | islp2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ℂ ∧ 𝑢 ∈ ℂ ) → ( 𝑢 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑢 } ) ( 𝑛 ∩ ( 𝑆 ∖ { 𝑢 } ) ) ≠ ∅ ) ) |
| 58 | 54 3 5 57 | mp3an12i | ⊢ ( 𝑢 ∈ 𝑆 → ( 𝑢 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑢 } ) ( 𝑛 ∩ ( 𝑆 ∖ { 𝑢 } ) ) ≠ ∅ ) ) |
| 59 | 53 58 | mpbird | ⊢ ( 𝑢 ∈ 𝑆 → 𝑢 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 60 | 59 | ssriv | ⊢ 𝑆 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) |
| 61 | eqid | ⊢ ( 𝐽 ↾t 𝑆 ) = ( 𝐽 ↾t 𝑆 ) | |
| 62 | 56 61 | restperf | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ℂ ) → ( ( 𝐽 ↾t 𝑆 ) ∈ Perf ↔ 𝑆 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 63 | 54 3 62 | mp2an | ⊢ ( ( 𝐽 ↾t 𝑆 ) ∈ Perf ↔ 𝑆 ⊆ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 64 | 60 63 | mpbir | ⊢ ( 𝐽 ↾t 𝑆 ) ∈ Perf |