This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The neighborhoods around a point P of a metric space are those subsets containing a ball around P . Definition of neighborhood in Kreyszig p. 19. (Contributed by NM, 8-Nov-2007) (Revised by Mario Carneiro, 23-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mopni.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | neibl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ↔ ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopni.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | 1 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → 𝐽 ∈ Top ) |
| 4 | 1 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 5 | 4 | eleq2d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑃 ∈ 𝑋 ↔ 𝑃 ∈ ∪ 𝐽 ) ) |
| 6 | 5 | biimpa | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → 𝑃 ∈ ∪ 𝐽 ) |
| 7 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 8 | 7 | isneip | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑃 ∈ ∪ 𝐽 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ↔ ( 𝑁 ⊆ ∪ 𝐽 ∧ ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ) ) ) |
| 9 | 3 6 8 | syl2anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ↔ ( 𝑁 ⊆ ∪ 𝐽 ∧ ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ) ) ) |
| 10 | 4 | sseq2d | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑁 ⊆ 𝑋 ↔ 𝑁 ⊆ ∪ 𝐽 ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑁 ⊆ 𝑋 ↔ 𝑁 ⊆ ∪ 𝐽 ) ) |
| 12 | 11 | anbi1d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ) ↔ ( 𝑁 ⊆ ∪ 𝐽 ∧ ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ) ) ) |
| 13 | 1 | mopni2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐽 ∧ 𝑃 ∈ 𝑦 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 ) |
| 14 | sstr2 | ⊢ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 → ( 𝑦 ⊆ 𝑁 → ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑁 ) ) | |
| 15 | 14 | com12 | ⊢ ( 𝑦 ⊆ 𝑁 → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 → ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑁 ) ) |
| 16 | 15 | reximdv | ⊢ ( 𝑦 ⊆ 𝑁 → ( ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑦 → ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑁 ) ) |
| 17 | 13 16 | syl5com | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐽 ∧ 𝑃 ∈ 𝑦 ) → ( 𝑦 ⊆ 𝑁 → ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑁 ) ) |
| 18 | 17 | 3exp | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑦 ∈ 𝐽 → ( 𝑃 ∈ 𝑦 → ( 𝑦 ⊆ 𝑁 → ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑁 ) ) ) ) |
| 19 | 18 | imp4a | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑦 ∈ 𝐽 → ( ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑁 ) ) ) |
| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ⊆ 𝑋 ) → ( 𝑦 ∈ 𝐽 → ( ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑁 ) ) ) |
| 21 | 20 | rexlimdv | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ⊆ 𝑋 ) → ( ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑁 ) ) |
| 22 | rpxr | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) | |
| 23 | 1 | blopn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐽 ) |
| 24 | 22 23 | syl3an3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐽 ) |
| 25 | blcntr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ) | |
| 26 | eleq2 | ⊢ ( 𝑦 = ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) → ( 𝑃 ∈ 𝑦 ↔ 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ) ) | |
| 27 | sseq1 | ⊢ ( 𝑦 = ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) → ( 𝑦 ⊆ 𝑁 ↔ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑁 ) ) | |
| 28 | 26 27 | anbi12d | ⊢ ( 𝑦 = ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) → ( ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ↔ ( 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑁 ) ) ) |
| 29 | 28 | rspcev | ⊢ ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐽 ∧ ( 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑁 ) ) → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ) |
| 30 | 29 | expr | ⊢ ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ∈ 𝐽 ∧ 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑁 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ) ) |
| 31 | 24 25 30 | syl2anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑁 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ) ) |
| 32 | 31 | 3expia | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑟 ∈ ℝ+ → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑁 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ) ) ) |
| 33 | 32 | rexlimdv | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑁 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ) ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ⊆ 𝑋 ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑁 → ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ) ) |
| 35 | 21 34 | impbid | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑁 ⊆ 𝑋 ) → ( ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ↔ ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑁 ) ) |
| 36 | 35 | pm5.32da | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 ∧ 𝑦 ⊆ 𝑁 ) ) ↔ ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑁 ) ) ) |
| 37 | 9 12 36 | 3bitr2d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ↔ ( 𝑁 ⊆ 𝑋 ∧ ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑁 ) ) ) |