This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the difference of two complex numbers is nonzero, they are unequal. Converse of subne0d . Contrapositive of subeq0bd . (Contributed by David Moews, 28-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| pncand.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| subne0ad.3 | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ≠ 0 ) | ||
| Assertion | subne0ad | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | pncand.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | subne0ad.3 | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ≠ 0 ) | |
| 4 | 1 2 | subeq0ad | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) |
| 5 | 4 | necon3bid | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) ≠ 0 ↔ 𝐴 ≠ 𝐵 ) ) |
| 6 | 3 5 | mpbid | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |