This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of the real numbers that is closed under addition with real numbers is perfect. (Contributed by Mario Carneiro, 26-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | recld2.1 | |- J = ( TopOpen ` CCfld ) |
|
| reperflem.2 | |- ( ( u e. S /\ v e. RR ) -> ( u + v ) e. S ) |
||
| reperflem.3 | |- S C_ CC |
||
| Assertion | reperflem | |- ( J |`t S ) e. Perf |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recld2.1 | |- J = ( TopOpen ` CCfld ) |
|
| 2 | reperflem.2 | |- ( ( u e. S /\ v e. RR ) -> ( u + v ) e. S ) |
|
| 3 | reperflem.3 | |- S C_ CC |
|
| 4 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 5 | 3 | sseli | |- ( u e. S -> u e. CC ) |
| 6 | 1 | cnfldtopn | |- J = ( MetOpen ` ( abs o. - ) ) |
| 7 | 6 | neibl | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ u e. CC ) -> ( n e. ( ( nei ` J ) ` { u } ) <-> ( n C_ CC /\ E. r e. RR+ ( u ( ball ` ( abs o. - ) ) r ) C_ n ) ) ) |
| 8 | 4 5 7 | sylancr | |- ( u e. S -> ( n e. ( ( nei ` J ) ` { u } ) <-> ( n C_ CC /\ E. r e. RR+ ( u ( ball ` ( abs o. - ) ) r ) C_ n ) ) ) |
| 9 | ssrin | |- ( ( u ( ball ` ( abs o. - ) ) r ) C_ n -> ( ( u ( ball ` ( abs o. - ) ) r ) i^i ( S \ { u } ) ) C_ ( n i^i ( S \ { u } ) ) ) |
|
| 10 | 2 | ralrimiva | |- ( u e. S -> A. v e. RR ( u + v ) e. S ) |
| 11 | rpre | |- ( r e. RR+ -> r e. RR ) |
|
| 12 | 11 | rehalfcld | |- ( r e. RR+ -> ( r / 2 ) e. RR ) |
| 13 | oveq2 | |- ( v = ( r / 2 ) -> ( u + v ) = ( u + ( r / 2 ) ) ) |
|
| 14 | 13 | eleq1d | |- ( v = ( r / 2 ) -> ( ( u + v ) e. S <-> ( u + ( r / 2 ) ) e. S ) ) |
| 15 | 14 | rspccva | |- ( ( A. v e. RR ( u + v ) e. S /\ ( r / 2 ) e. RR ) -> ( u + ( r / 2 ) ) e. S ) |
| 16 | 10 12 15 | syl2an | |- ( ( u e. S /\ r e. RR+ ) -> ( u + ( r / 2 ) ) e. S ) |
| 17 | 3 16 | sselid | |- ( ( u e. S /\ r e. RR+ ) -> ( u + ( r / 2 ) ) e. CC ) |
| 18 | 5 | adantr | |- ( ( u e. S /\ r e. RR+ ) -> u e. CC ) |
| 19 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 20 | 19 | cnmetdval | |- ( ( ( u + ( r / 2 ) ) e. CC /\ u e. CC ) -> ( ( u + ( r / 2 ) ) ( abs o. - ) u ) = ( abs ` ( ( u + ( r / 2 ) ) - u ) ) ) |
| 21 | 17 18 20 | syl2anc | |- ( ( u e. S /\ r e. RR+ ) -> ( ( u + ( r / 2 ) ) ( abs o. - ) u ) = ( abs ` ( ( u + ( r / 2 ) ) - u ) ) ) |
| 22 | simpr | |- ( ( u e. S /\ r e. RR+ ) -> r e. RR+ ) |
|
| 23 | 22 | rphalfcld | |- ( ( u e. S /\ r e. RR+ ) -> ( r / 2 ) e. RR+ ) |
| 24 | 23 | rpcnd | |- ( ( u e. S /\ r e. RR+ ) -> ( r / 2 ) e. CC ) |
| 25 | 18 24 | pncan2d | |- ( ( u e. S /\ r e. RR+ ) -> ( ( u + ( r / 2 ) ) - u ) = ( r / 2 ) ) |
| 26 | 25 | fveq2d | |- ( ( u e. S /\ r e. RR+ ) -> ( abs ` ( ( u + ( r / 2 ) ) - u ) ) = ( abs ` ( r / 2 ) ) ) |
| 27 | 23 | rpred | |- ( ( u e. S /\ r e. RR+ ) -> ( r / 2 ) e. RR ) |
| 28 | 23 | rpge0d | |- ( ( u e. S /\ r e. RR+ ) -> 0 <_ ( r / 2 ) ) |
| 29 | 27 28 | absidd | |- ( ( u e. S /\ r e. RR+ ) -> ( abs ` ( r / 2 ) ) = ( r / 2 ) ) |
| 30 | 21 26 29 | 3eqtrd | |- ( ( u e. S /\ r e. RR+ ) -> ( ( u + ( r / 2 ) ) ( abs o. - ) u ) = ( r / 2 ) ) |
| 31 | rphalflt | |- ( r e. RR+ -> ( r / 2 ) < r ) |
|
| 32 | 31 | adantl | |- ( ( u e. S /\ r e. RR+ ) -> ( r / 2 ) < r ) |
| 33 | 30 32 | eqbrtrd | |- ( ( u e. S /\ r e. RR+ ) -> ( ( u + ( r / 2 ) ) ( abs o. - ) u ) < r ) |
| 34 | 4 | a1i | |- ( ( u e. S /\ r e. RR+ ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 35 | rpxr | |- ( r e. RR+ -> r e. RR* ) |
|
| 36 | 35 | adantl | |- ( ( u e. S /\ r e. RR+ ) -> r e. RR* ) |
| 37 | elbl3 | |- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ r e. RR* ) /\ ( u e. CC /\ ( u + ( r / 2 ) ) e. CC ) ) -> ( ( u + ( r / 2 ) ) e. ( u ( ball ` ( abs o. - ) ) r ) <-> ( ( u + ( r / 2 ) ) ( abs o. - ) u ) < r ) ) |
|
| 38 | 34 36 18 17 37 | syl22anc | |- ( ( u e. S /\ r e. RR+ ) -> ( ( u + ( r / 2 ) ) e. ( u ( ball ` ( abs o. - ) ) r ) <-> ( ( u + ( r / 2 ) ) ( abs o. - ) u ) < r ) ) |
| 39 | 33 38 | mpbird | |- ( ( u e. S /\ r e. RR+ ) -> ( u + ( r / 2 ) ) e. ( u ( ball ` ( abs o. - ) ) r ) ) |
| 40 | 23 | rpne0d | |- ( ( u e. S /\ r e. RR+ ) -> ( r / 2 ) =/= 0 ) |
| 41 | 25 40 | eqnetrd | |- ( ( u e. S /\ r e. RR+ ) -> ( ( u + ( r / 2 ) ) - u ) =/= 0 ) |
| 42 | 17 18 41 | subne0ad | |- ( ( u e. S /\ r e. RR+ ) -> ( u + ( r / 2 ) ) =/= u ) |
| 43 | eldifsn | |- ( ( u + ( r / 2 ) ) e. ( S \ { u } ) <-> ( ( u + ( r / 2 ) ) e. S /\ ( u + ( r / 2 ) ) =/= u ) ) |
|
| 44 | 16 42 43 | sylanbrc | |- ( ( u e. S /\ r e. RR+ ) -> ( u + ( r / 2 ) ) e. ( S \ { u } ) ) |
| 45 | inelcm | |- ( ( ( u + ( r / 2 ) ) e. ( u ( ball ` ( abs o. - ) ) r ) /\ ( u + ( r / 2 ) ) e. ( S \ { u } ) ) -> ( ( u ( ball ` ( abs o. - ) ) r ) i^i ( S \ { u } ) ) =/= (/) ) |
|
| 46 | 39 44 45 | syl2anc | |- ( ( u e. S /\ r e. RR+ ) -> ( ( u ( ball ` ( abs o. - ) ) r ) i^i ( S \ { u } ) ) =/= (/) ) |
| 47 | ssn0 | |- ( ( ( ( u ( ball ` ( abs o. - ) ) r ) i^i ( S \ { u } ) ) C_ ( n i^i ( S \ { u } ) ) /\ ( ( u ( ball ` ( abs o. - ) ) r ) i^i ( S \ { u } ) ) =/= (/) ) -> ( n i^i ( S \ { u } ) ) =/= (/) ) |
|
| 48 | 47 | ex | |- ( ( ( u ( ball ` ( abs o. - ) ) r ) i^i ( S \ { u } ) ) C_ ( n i^i ( S \ { u } ) ) -> ( ( ( u ( ball ` ( abs o. - ) ) r ) i^i ( S \ { u } ) ) =/= (/) -> ( n i^i ( S \ { u } ) ) =/= (/) ) ) |
| 49 | 9 46 48 | syl2imc | |- ( ( u e. S /\ r e. RR+ ) -> ( ( u ( ball ` ( abs o. - ) ) r ) C_ n -> ( n i^i ( S \ { u } ) ) =/= (/) ) ) |
| 50 | 49 | rexlimdva | |- ( u e. S -> ( E. r e. RR+ ( u ( ball ` ( abs o. - ) ) r ) C_ n -> ( n i^i ( S \ { u } ) ) =/= (/) ) ) |
| 51 | 50 | adantld | |- ( u e. S -> ( ( n C_ CC /\ E. r e. RR+ ( u ( ball ` ( abs o. - ) ) r ) C_ n ) -> ( n i^i ( S \ { u } ) ) =/= (/) ) ) |
| 52 | 8 51 | sylbid | |- ( u e. S -> ( n e. ( ( nei ` J ) ` { u } ) -> ( n i^i ( S \ { u } ) ) =/= (/) ) ) |
| 53 | 52 | ralrimiv | |- ( u e. S -> A. n e. ( ( nei ` J ) ` { u } ) ( n i^i ( S \ { u } ) ) =/= (/) ) |
| 54 | 1 | cnfldtop | |- J e. Top |
| 55 | 1 | cnfldtopon | |- J e. ( TopOn ` CC ) |
| 56 | 55 | toponunii | |- CC = U. J |
| 57 | 56 | islp2 | |- ( ( J e. Top /\ S C_ CC /\ u e. CC ) -> ( u e. ( ( limPt ` J ) ` S ) <-> A. n e. ( ( nei ` J ) ` { u } ) ( n i^i ( S \ { u } ) ) =/= (/) ) ) |
| 58 | 54 3 5 57 | mp3an12i | |- ( u e. S -> ( u e. ( ( limPt ` J ) ` S ) <-> A. n e. ( ( nei ` J ) ` { u } ) ( n i^i ( S \ { u } ) ) =/= (/) ) ) |
| 59 | 53 58 | mpbird | |- ( u e. S -> u e. ( ( limPt ` J ) ` S ) ) |
| 60 | 59 | ssriv | |- S C_ ( ( limPt ` J ) ` S ) |
| 61 | eqid | |- ( J |`t S ) = ( J |`t S ) |
|
| 62 | 56 61 | restperf | |- ( ( J e. Top /\ S C_ CC ) -> ( ( J |`t S ) e. Perf <-> S C_ ( ( limPt ` J ) ` S ) ) ) |
| 63 | 54 3 62 | mp2an | |- ( ( J |`t S ) e. Perf <-> S C_ ( ( limPt ` J ) ` S ) ) |
| 64 | 60 63 | mpbir | |- ( J |`t S ) e. Perf |