This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rankonid . (Contributed by NM, 14-Oct-2003) (Revised by Mario Carneiro, 22-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankonidlem | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝐴 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 2 | 1 | simpri | ⊢ Lim dom 𝑅1 |
| 3 | limord | ⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) | |
| 4 | 2 3 | ax-mp | ⊢ Ord dom 𝑅1 |
| 5 | ordelon | ⊢ ( ( Ord dom 𝑅1 ∧ 𝐴 ∈ dom 𝑅1 ) → 𝐴 ∈ On ) | |
| 6 | 4 5 | mpan | ⊢ ( 𝐴 ∈ dom 𝑅1 → 𝐴 ∈ On ) |
| 7 | eleq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ dom 𝑅1 ↔ 𝑦 ∈ dom 𝑅1 ) ) | |
| 8 | eleq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) ) | |
| 9 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( rank ‘ 𝑥 ) = ( rank ‘ 𝑦 ) ) | |
| 10 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 11 | 9 10 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( rank ‘ 𝑥 ) = 𝑥 ↔ ( rank ‘ 𝑦 ) = 𝑦 ) ) |
| 12 | 8 11 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑥 ) = 𝑥 ) ↔ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) ) |
| 13 | 7 12 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ dom 𝑅1 → ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑥 ) = 𝑥 ) ) ↔ ( 𝑦 ∈ dom 𝑅1 → ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) ) ) |
| 14 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ dom 𝑅1 ↔ 𝐴 ∈ dom 𝑅1 ) ) | |
| 15 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) ) | |
| 16 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) ) | |
| 17 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 18 | 16 17 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( rank ‘ 𝑥 ) = 𝑥 ↔ ( rank ‘ 𝐴 ) = 𝐴 ) ) |
| 19 | 15 18 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑥 ) = 𝑥 ) ↔ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝐴 ) = 𝐴 ) ) ) |
| 20 | 14 19 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ dom 𝑅1 → ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑥 ) = 𝑥 ) ) ↔ ( 𝐴 ∈ dom 𝑅1 → ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝐴 ) = 𝐴 ) ) ) ) |
| 21 | ordtr1 | ⊢ ( Ord dom 𝑅1 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) → 𝑦 ∈ dom 𝑅1 ) ) | |
| 22 | 4 21 | ax-mp | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ dom 𝑅1 ) → 𝑦 ∈ dom 𝑅1 ) |
| 23 | 22 | ancoms | ⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ dom 𝑅1 ) |
| 24 | pm5.5 | ⊢ ( 𝑦 ∈ dom 𝑅1 → ( ( 𝑦 ∈ dom 𝑅1 → ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) ↔ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) ) | |
| 25 | 23 24 | syl | ⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑦 ∈ dom 𝑅1 → ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) ↔ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) ) |
| 26 | 25 | ralbidva | ⊢ ( 𝑥 ∈ dom 𝑅1 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ dom 𝑅1 → ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) ) |
| 27 | simplr | ⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑦 ∈ 𝑥 ) | |
| 28 | ordelon | ⊢ ( ( Ord dom 𝑅1 ∧ 𝑥 ∈ dom 𝑅1 ) → 𝑥 ∈ On ) | |
| 29 | 4 28 | mpan | ⊢ ( 𝑥 ∈ dom 𝑅1 → 𝑥 ∈ On ) |
| 30 | 29 | ad2antrr | ⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑥 ∈ On ) |
| 31 | eloni | ⊢ ( 𝑥 ∈ On → Ord 𝑥 ) | |
| 32 | 30 31 | syl | ⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → Ord 𝑥 ) |
| 33 | ordelsuc | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ Ord 𝑥 ) → ( 𝑦 ∈ 𝑥 ↔ suc 𝑦 ⊆ 𝑥 ) ) | |
| 34 | 27 32 33 | syl2anc | ⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑦 ∈ 𝑥 ↔ suc 𝑦 ⊆ 𝑥 ) ) |
| 35 | 27 34 | mpbid | ⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → suc 𝑦 ⊆ 𝑥 ) |
| 36 | 23 | adantr | ⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑦 ∈ dom 𝑅1 ) |
| 37 | limsuc | ⊢ ( Lim dom 𝑅1 → ( 𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1 ) ) | |
| 38 | 2 37 | ax-mp | ⊢ ( 𝑦 ∈ dom 𝑅1 ↔ suc 𝑦 ∈ dom 𝑅1 ) |
| 39 | 36 38 | sylib | ⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → suc 𝑦 ∈ dom 𝑅1 ) |
| 40 | simpll | ⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑥 ∈ dom 𝑅1 ) | |
| 41 | r1ord3g | ⊢ ( ( suc 𝑦 ∈ dom 𝑅1 ∧ 𝑥 ∈ dom 𝑅1 ) → ( suc 𝑦 ⊆ 𝑥 → ( 𝑅1 ‘ suc 𝑦 ) ⊆ ( 𝑅1 ‘ 𝑥 ) ) ) | |
| 42 | 39 40 41 | syl2anc | ⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( suc 𝑦 ⊆ 𝑥 → ( 𝑅1 ‘ suc 𝑦 ) ⊆ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 43 | 35 42 | mpd | ⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑅1 ‘ suc 𝑦 ) ⊆ ( 𝑅1 ‘ 𝑥 ) ) |
| 44 | rankidb | ⊢ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) → 𝑦 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ) | |
| 45 | 44 | ad2antrl | ⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑦 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) ) |
| 46 | suceq | ⊢ ( ( rank ‘ 𝑦 ) = 𝑦 → suc ( rank ‘ 𝑦 ) = suc 𝑦 ) | |
| 47 | 46 | ad2antll | ⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → suc ( rank ‘ 𝑦 ) = suc 𝑦 ) |
| 48 | 47 | fveq2d | ⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑅1 ‘ suc ( rank ‘ 𝑦 ) ) = ( 𝑅1 ‘ suc 𝑦 ) ) |
| 49 | 45 48 | eleqtrd | ⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑦 ∈ ( 𝑅1 ‘ suc 𝑦 ) ) |
| 50 | 43 49 | sseldd | ⊢ ( ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 51 | 50 | ex | ⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) → 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 52 | 51 | ralimdva | ⊢ ( 𝑥 ∈ dom 𝑅1 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) ) |
| 53 | 52 | imp | ⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) |
| 54 | dfss3 | ⊢ ( 𝑥 ⊆ ( 𝑅1 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ ( 𝑅1 ‘ 𝑥 ) ) | |
| 55 | 53 54 | sylibr | ⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑥 ⊆ ( 𝑅1 ‘ 𝑥 ) ) |
| 56 | vex | ⊢ 𝑥 ∈ V | |
| 57 | 56 | elpw | ⊢ ( 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ↔ 𝑥 ⊆ ( 𝑅1 ‘ 𝑥 ) ) |
| 58 | 55 57 | sylibr | ⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑥 ∈ 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 59 | r1sucg | ⊢ ( 𝑥 ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) | |
| 60 | 59 | adantr | ⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑅1 ‘ suc 𝑥 ) = 𝒫 ( 𝑅1 ‘ 𝑥 ) ) |
| 61 | 58 60 | eleqtrrd | ⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑥 ∈ ( 𝑅1 ‘ suc 𝑥 ) ) |
| 62 | r1elwf | ⊢ ( 𝑥 ∈ ( 𝑅1 ‘ suc 𝑥 ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 63 | 61 62 | syl | ⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
| 64 | rankval3b | ⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝑥 ) = ∩ { 𝑧 ∈ On ∣ ∀ 𝑦 ∈ 𝑥 ( rank ‘ 𝑦 ) ∈ 𝑧 } ) | |
| 65 | 63 64 | syl | ⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( rank ‘ 𝑥 ) = ∩ { 𝑧 ∈ On ∣ ∀ 𝑦 ∈ 𝑥 ( rank ‘ 𝑦 ) ∈ 𝑧 } ) |
| 66 | eleq1 | ⊢ ( ( rank ‘ 𝑦 ) = 𝑦 → ( ( rank ‘ 𝑦 ) ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) | |
| 67 | 66 | adantl | ⊢ ( ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) → ( ( rank ‘ 𝑦 ) ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) |
| 68 | 67 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) → ∀ 𝑦 ∈ 𝑥 ( ( rank ‘ 𝑦 ) ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) |
| 69 | ralbi | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( ( rank ‘ 𝑦 ) ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) → ( ∀ 𝑦 ∈ 𝑥 ( rank ‘ 𝑦 ) ∈ 𝑧 ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝑧 ) ) | |
| 70 | 68 69 | syl | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) → ( ∀ 𝑦 ∈ 𝑥 ( rank ‘ 𝑦 ) ∈ 𝑧 ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝑧 ) ) |
| 71 | dfss3 | ⊢ ( 𝑥 ⊆ 𝑧 ↔ ∀ 𝑦 ∈ 𝑥 𝑦 ∈ 𝑧 ) | |
| 72 | 70 71 | bitr4di | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) → ( ∀ 𝑦 ∈ 𝑥 ( rank ‘ 𝑦 ) ∈ 𝑧 ↔ 𝑥 ⊆ 𝑧 ) ) |
| 73 | 72 | rabbidv | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) → { 𝑧 ∈ On ∣ ∀ 𝑦 ∈ 𝑥 ( rank ‘ 𝑦 ) ∈ 𝑧 } = { 𝑧 ∈ On ∣ 𝑥 ⊆ 𝑧 } ) |
| 74 | 73 | inteqd | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) → ∩ { 𝑧 ∈ On ∣ ∀ 𝑦 ∈ 𝑥 ( rank ‘ 𝑦 ) ∈ 𝑧 } = ∩ { 𝑧 ∈ On ∣ 𝑥 ⊆ 𝑧 } ) |
| 75 | 74 | adantl | ⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ∩ { 𝑧 ∈ On ∣ ∀ 𝑦 ∈ 𝑥 ( rank ‘ 𝑦 ) ∈ 𝑧 } = ∩ { 𝑧 ∈ On ∣ 𝑥 ⊆ 𝑧 } ) |
| 76 | 29 | adantr | ⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → 𝑥 ∈ On ) |
| 77 | intmin | ⊢ ( 𝑥 ∈ On → ∩ { 𝑧 ∈ On ∣ 𝑥 ⊆ 𝑧 } = 𝑥 ) | |
| 78 | 76 77 | syl | ⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ∩ { 𝑧 ∈ On ∣ 𝑥 ⊆ 𝑧 } = 𝑥 ) |
| 79 | 65 75 78 | 3eqtrd | ⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( rank ‘ 𝑥 ) = 𝑥 ) |
| 80 | 63 79 | jca | ⊢ ( ( 𝑥 ∈ dom 𝑅1 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑥 ) = 𝑥 ) ) |
| 81 | 80 | ex | ⊢ ( 𝑥 ∈ dom 𝑅1 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) → ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑥 ) = 𝑥 ) ) ) |
| 82 | 26 81 | sylbid | ⊢ ( 𝑥 ∈ dom 𝑅1 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ dom 𝑅1 → ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑥 ) = 𝑥 ) ) ) |
| 83 | 82 | com12 | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ dom 𝑅1 → ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑥 ∈ dom 𝑅1 → ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑥 ) = 𝑥 ) ) ) |
| 84 | 83 | a1i | ⊢ ( 𝑥 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( 𝑦 ∈ dom 𝑅1 → ( 𝑦 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑦 ) = 𝑦 ) ) → ( 𝑥 ∈ dom 𝑅1 → ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝑥 ) = 𝑥 ) ) ) ) |
| 85 | 13 20 84 | tfis3 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ∈ dom 𝑅1 → ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝐴 ) = 𝐴 ) ) ) |
| 86 | 6 85 | mpcom | ⊢ ( 𝐴 ∈ dom 𝑅1 → ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ ( rank ‘ 𝐴 ) = 𝐴 ) ) |