This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any member of a class is the smallest of those members that include it. (Contributed by NM, 13-Aug-2002) (Proof shortened by Andrew Salmon, 9-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intmin | ⊢ ( 𝐴 ∈ 𝐵 → ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑦 ∈ V | |
| 2 | 1 | elintrab | ⊢ ( 𝑦 ∈ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ↔ ∀ 𝑥 ∈ 𝐵 ( 𝐴 ⊆ 𝑥 → 𝑦 ∈ 𝑥 ) ) |
| 3 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 4 | sseq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ 𝐴 ) ) | |
| 5 | eleq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 6 | 4 5 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐴 ⊆ 𝑥 → 𝑦 ∈ 𝑥 ) ↔ ( 𝐴 ⊆ 𝐴 → 𝑦 ∈ 𝐴 ) ) ) |
| 7 | 6 | rspcv | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ( 𝐴 ⊆ 𝑥 → 𝑦 ∈ 𝑥 ) → ( 𝐴 ⊆ 𝐴 → 𝑦 ∈ 𝐴 ) ) ) |
| 8 | 3 7 | mpii | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ( 𝐴 ⊆ 𝑥 → 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝐴 ) ) |
| 9 | 2 8 | biimtrid | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝑦 ∈ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } → 𝑦 ∈ 𝐴 ) ) |
| 10 | 9 | ssrdv | ⊢ ( 𝐴 ∈ 𝐵 → ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ⊆ 𝐴 ) |
| 11 | ssintub | ⊢ 𝐴 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } | |
| 12 | 11 | a1i | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ⊆ ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } ) |
| 13 | 10 12 | eqssd | ⊢ ( 𝐴 ∈ 𝐵 → ∩ { 𝑥 ∈ 𝐵 ∣ 𝐴 ⊆ 𝑥 } = 𝐴 ) |