This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two functions on a base topology J make the same identifications in order to create quotient spaces J qTop F and J qTop G , then not only are J qTop F and J qTop G homeomorphic, but there is a unique homeomorphism that makes the diagram commute. (Contributed by Mario Carneiro, 24-Mar-2015) (Proof shortened by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qtophmeo.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| qtophmeo.3 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) | ||
| qtophmeo.4 | ⊢ ( 𝜑 → 𝐺 : 𝑋 –onto→ 𝑌 ) | ||
| qtophmeo.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ) | ||
| Assertion | qtophmeo | ⊢ ( 𝜑 → ∃! 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtophmeo.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | qtophmeo.3 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) | |
| 3 | qtophmeo.4 | ⊢ ( 𝜑 → 𝐺 : 𝑋 –onto→ 𝑌 ) | |
| 4 | qtophmeo.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ) | |
| 5 | fofn | ⊢ ( 𝐺 : 𝑋 –onto→ 𝑌 → 𝐺 Fn 𝑋 ) | |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → 𝐺 Fn 𝑋 ) |
| 7 | qtopid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐺 Fn 𝑋 ) → 𝐺 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐺 ) ) ) | |
| 8 | 1 6 7 | syl2anc | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐺 ) ) ) |
| 9 | df-3an | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) | |
| 10 | 4 | biimpd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ) |
| 11 | 10 | impr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 12 | 9 11 | sylan2b | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 13 | 1 2 8 12 | qtopeu | ⊢ ( 𝜑 → ∃! 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ) |
| 14 | reurex | ⊢ ( ∃! 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) 𝐺 = ( 𝑓 ∘ 𝐹 ) → ∃ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → ∃ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ) |
| 16 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) → 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ) | |
| 17 | fofn | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 Fn 𝑋 ) | |
| 18 | 2 17 | syl | ⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 19 | qtopid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 Fn 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) | |
| 20 | 1 18 19 | syl2anc | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn ( 𝐽 qTop 𝐹 ) ) ) |
| 21 | df-3an | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ) | |
| 22 | 4 | biimprd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
| 23 | 22 | impr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 24 | 21 23 | sylan2b | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 25 | 1 3 20 24 | qtopeu | ⊢ ( 𝜑 → ∃! 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) 𝐹 = ( 𝑔 ∘ 𝐺 ) ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) → ∃! 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) 𝐹 = ( 𝑔 ∘ 𝐺 ) ) |
| 27 | reurex | ⊢ ( ∃! 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) 𝐹 = ( 𝑔 ∘ 𝐺 ) → ∃ 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) 𝐹 = ( 𝑔 ∘ 𝐺 ) ) | |
| 28 | 26 27 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) → ∃ 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) 𝐹 = ( 𝑔 ∘ 𝐺 ) ) |
| 29 | qtoptopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) | |
| 30 | 1 2 29 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 31 | 30 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 32 | qtoptopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐺 : 𝑋 –onto→ 𝑌 ) → ( 𝐽 qTop 𝐺 ) ∈ ( TopOn ‘ 𝑌 ) ) | |
| 33 | 1 3 32 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 qTop 𝐺 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 34 | 33 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( 𝐽 qTop 𝐺 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 35 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ) | |
| 36 | cnf2 | ⊢ ( ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ∧ ( 𝐽 qTop 𝐺 ) ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ) → 𝑓 : 𝑌 ⟶ 𝑌 ) | |
| 37 | 31 34 35 36 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝑓 : 𝑌 ⟶ 𝑌 ) |
| 38 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ) | |
| 39 | cnf2 | ⊢ ( ( ( 𝐽 qTop 𝐺 ) ∈ ( TopOn ‘ 𝑌 ) ∧ ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ) → 𝑔 : 𝑌 ⟶ 𝑌 ) | |
| 40 | 34 31 38 39 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝑔 : 𝑌 ⟶ 𝑌 ) |
| 41 | coeq1 | ⊢ ( ℎ = ( 𝑔 ∘ 𝑓 ) → ( ℎ ∘ 𝐹 ) = ( ( 𝑔 ∘ 𝑓 ) ∘ 𝐹 ) ) | |
| 42 | 41 | eqeq2d | ⊢ ( ℎ = ( 𝑔 ∘ 𝑓 ) → ( 𝐹 = ( ℎ ∘ 𝐹 ) ↔ 𝐹 = ( ( 𝑔 ∘ 𝑓 ) ∘ 𝐹 ) ) ) |
| 43 | coeq1 | ⊢ ( ℎ = ( I ↾ 𝑌 ) → ( ℎ ∘ 𝐹 ) = ( ( I ↾ 𝑌 ) ∘ 𝐹 ) ) | |
| 44 | 43 | eqeq2d | ⊢ ( ℎ = ( I ↾ 𝑌 ) → ( 𝐹 = ( ℎ ∘ 𝐹 ) ↔ 𝐹 = ( ( I ↾ 𝑌 ) ∘ 𝐹 ) ) ) |
| 45 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 46 | 1 2 20 45 | qtopeu | ⊢ ( 𝜑 → ∃! ℎ ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐹 ) ) 𝐹 = ( ℎ ∘ 𝐹 ) ) |
| 47 | 46 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ∃! ℎ ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐹 ) ) 𝐹 = ( ℎ ∘ 𝐹 ) ) |
| 48 | cnco | ⊢ ( ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐹 ) ) ) | |
| 49 | 35 38 48 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( 𝑔 ∘ 𝑓 ) ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐹 ) ) ) |
| 50 | idcn | ⊢ ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) → ( I ↾ 𝑌 ) ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐹 ) ) ) | |
| 51 | 30 50 | syl | ⊢ ( 𝜑 → ( I ↾ 𝑌 ) ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐹 ) ) ) |
| 52 | 51 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( I ↾ 𝑌 ) ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐹 ) ) ) |
| 53 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝐹 = ( 𝑔 ∘ 𝐺 ) ) | |
| 54 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝐺 = ( 𝑓 ∘ 𝐹 ) ) | |
| 55 | 54 | coeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( 𝑔 ∘ 𝐺 ) = ( 𝑔 ∘ ( 𝑓 ∘ 𝐹 ) ) ) |
| 56 | 53 55 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝐹 = ( 𝑔 ∘ ( 𝑓 ∘ 𝐹 ) ) ) |
| 57 | coass | ⊢ ( ( 𝑔 ∘ 𝑓 ) ∘ 𝐹 ) = ( 𝑔 ∘ ( 𝑓 ∘ 𝐹 ) ) | |
| 58 | 56 57 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝐹 = ( ( 𝑔 ∘ 𝑓 ) ∘ 𝐹 ) ) |
| 59 | fof | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 60 | 2 59 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 61 | 60 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 62 | fcoi2 | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( ( I ↾ 𝑌 ) ∘ 𝐹 ) = 𝐹 ) | |
| 63 | 61 62 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( ( I ↾ 𝑌 ) ∘ 𝐹 ) = 𝐹 ) |
| 64 | 63 | eqcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝐹 = ( ( I ↾ 𝑌 ) ∘ 𝐹 ) ) |
| 65 | 42 44 47 49 52 58 64 | reu2eqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( 𝑔 ∘ 𝑓 ) = ( I ↾ 𝑌 ) ) |
| 66 | coeq1 | ⊢ ( ℎ = ( 𝑓 ∘ 𝑔 ) → ( ℎ ∘ 𝐺 ) = ( ( 𝑓 ∘ 𝑔 ) ∘ 𝐺 ) ) | |
| 67 | 66 | eqeq2d | ⊢ ( ℎ = ( 𝑓 ∘ 𝑔 ) → ( 𝐺 = ( ℎ ∘ 𝐺 ) ↔ 𝐺 = ( ( 𝑓 ∘ 𝑔 ) ∘ 𝐺 ) ) ) |
| 68 | coeq1 | ⊢ ( ℎ = ( I ↾ 𝑌 ) → ( ℎ ∘ 𝐺 ) = ( ( I ↾ 𝑌 ) ∘ 𝐺 ) ) | |
| 69 | 68 | eqeq2d | ⊢ ( ℎ = ( I ↾ 𝑌 ) → ( 𝐺 = ( ℎ ∘ 𝐺 ) ↔ 𝐺 = ( ( I ↾ 𝑌 ) ∘ 𝐺 ) ) ) |
| 70 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 71 | 1 3 8 70 | qtopeu | ⊢ ( 𝜑 → ∃! ℎ ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐺 ) ) 𝐺 = ( ℎ ∘ 𝐺 ) ) |
| 72 | 71 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ∃! ℎ ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐺 ) ) 𝐺 = ( ℎ ∘ 𝐺 ) ) |
| 73 | cnco | ⊢ ( ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ) → ( 𝑓 ∘ 𝑔 ) ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐺 ) ) ) | |
| 74 | 38 35 73 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( 𝑓 ∘ 𝑔 ) ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐺 ) ) ) |
| 75 | idcn | ⊢ ( ( 𝐽 qTop 𝐺 ) ∈ ( TopOn ‘ 𝑌 ) → ( I ↾ 𝑌 ) ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐺 ) ) ) | |
| 76 | 33 75 | syl | ⊢ ( 𝜑 → ( I ↾ 𝑌 ) ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐺 ) ) ) |
| 77 | 76 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( I ↾ 𝑌 ) ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐺 ) ) ) |
| 78 | 53 | coeq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( 𝑓 ∘ 𝐹 ) = ( 𝑓 ∘ ( 𝑔 ∘ 𝐺 ) ) ) |
| 79 | 54 78 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝐺 = ( 𝑓 ∘ ( 𝑔 ∘ 𝐺 ) ) ) |
| 80 | coass | ⊢ ( ( 𝑓 ∘ 𝑔 ) ∘ 𝐺 ) = ( 𝑓 ∘ ( 𝑔 ∘ 𝐺 ) ) | |
| 81 | 79 80 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝐺 = ( ( 𝑓 ∘ 𝑔 ) ∘ 𝐺 ) ) |
| 82 | fof | ⊢ ( 𝐺 : 𝑋 –onto→ 𝑌 → 𝐺 : 𝑋 ⟶ 𝑌 ) | |
| 83 | 3 82 | syl | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ 𝑌 ) |
| 84 | 83 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝐺 : 𝑋 ⟶ 𝑌 ) |
| 85 | fcoi2 | ⊢ ( 𝐺 : 𝑋 ⟶ 𝑌 → ( ( I ↾ 𝑌 ) ∘ 𝐺 ) = 𝐺 ) | |
| 86 | 84 85 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( ( I ↾ 𝑌 ) ∘ 𝐺 ) = 𝐺 ) |
| 87 | 86 | eqcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → 𝐺 = ( ( I ↾ 𝑌 ) ∘ 𝐺 ) ) |
| 88 | 67 69 72 74 77 81 87 | reu2eqd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ( 𝑓 ∘ 𝑔 ) = ( I ↾ 𝑌 ) ) |
| 89 | 37 40 65 88 | 2fcoidinvd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ◡ 𝑓 = 𝑔 ) |
| 90 | 89 38 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) ∧ ( 𝑔 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ∧ 𝐹 = ( 𝑔 ∘ 𝐺 ) ) ) → ◡ 𝑓 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ) |
| 91 | 28 90 | rexlimddv | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) → ◡ 𝑓 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ) |
| 92 | ishmeo | ⊢ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ↔ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ ◡ 𝑓 ∈ ( ( 𝐽 qTop 𝐺 ) Cn ( 𝐽 qTop 𝐹 ) ) ) ) | |
| 93 | 16 91 92 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) → 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) |
| 94 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn ( 𝐽 qTop 𝐺 ) ) ∧ 𝐺 = ( 𝑓 ∘ 𝐹 ) ) ) → 𝐺 = ( 𝑓 ∘ 𝐹 ) ) | |
| 95 | 15 93 94 | reximssdv | ⊢ ( 𝜑 → ∃ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ) |
| 96 | eqtr2 | ⊢ ( ( 𝐺 = ( 𝑓 ∘ 𝐹 ) ∧ 𝐺 = ( 𝑔 ∘ 𝐹 ) ) → ( 𝑓 ∘ 𝐹 ) = ( 𝑔 ∘ 𝐹 ) ) | |
| 97 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → 𝐹 : 𝑋 –onto→ 𝑌 ) |
| 98 | 30 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 99 | 33 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → ( 𝐽 qTop 𝐺 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 100 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) | |
| 101 | hmeof1o2 | ⊢ ( ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ∧ ( 𝐽 qTop 𝐺 ) ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) → 𝑓 : 𝑌 –1-1-onto→ 𝑌 ) | |
| 102 | 98 99 100 101 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → 𝑓 : 𝑌 –1-1-onto→ 𝑌 ) |
| 103 | f1ofn | ⊢ ( 𝑓 : 𝑌 –1-1-onto→ 𝑌 → 𝑓 Fn 𝑌 ) | |
| 104 | 102 103 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → 𝑓 Fn 𝑌 ) |
| 105 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) | |
| 106 | hmeof1o2 | ⊢ ( ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ∧ ( 𝐽 qTop 𝐺 ) ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) → 𝑔 : 𝑌 –1-1-onto→ 𝑌 ) | |
| 107 | 98 99 105 106 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → 𝑔 : 𝑌 –1-1-onto→ 𝑌 ) |
| 108 | f1ofn | ⊢ ( 𝑔 : 𝑌 –1-1-onto→ 𝑌 → 𝑔 Fn 𝑌 ) | |
| 109 | 107 108 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → 𝑔 Fn 𝑌 ) |
| 110 | cocan2 | ⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝑓 Fn 𝑌 ∧ 𝑔 Fn 𝑌 ) → ( ( 𝑓 ∘ 𝐹 ) = ( 𝑔 ∘ 𝐹 ) ↔ 𝑓 = 𝑔 ) ) | |
| 111 | 97 104 109 110 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → ( ( 𝑓 ∘ 𝐹 ) = ( 𝑔 ∘ 𝐹 ) ↔ 𝑓 = 𝑔 ) ) |
| 112 | 96 111 | imbitrid | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ) ) → ( ( 𝐺 = ( 𝑓 ∘ 𝐹 ) ∧ 𝐺 = ( 𝑔 ∘ 𝐹 ) ) → 𝑓 = 𝑔 ) ) |
| 113 | 112 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∀ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ( ( 𝐺 = ( 𝑓 ∘ 𝐹 ) ∧ 𝐺 = ( 𝑔 ∘ 𝐹 ) ) → 𝑓 = 𝑔 ) ) |
| 114 | coeq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 ∘ 𝐹 ) = ( 𝑔 ∘ 𝐹 ) ) | |
| 115 | 114 | eqeq2d | ⊢ ( 𝑓 = 𝑔 → ( 𝐺 = ( 𝑓 ∘ 𝐹 ) ↔ 𝐺 = ( 𝑔 ∘ 𝐹 ) ) ) |
| 116 | 115 | reu4 | ⊢ ( ∃! 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ↔ ( ∃ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ∧ ∀ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ∀ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) ( ( 𝐺 = ( 𝑓 ∘ 𝐹 ) ∧ 𝐺 = ( 𝑔 ∘ 𝐹 ) ) → 𝑓 = 𝑔 ) ) ) |
| 117 | 95 113 116 | sylanbrc | ⊢ ( 𝜑 → ∃! 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Homeo ( 𝐽 qTop 𝐺 ) ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ) |