This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal property of the quotient topology. If G is a function from J to K which is equal on all equivalent elements under F , then there is a unique continuous map f : ( J / F ) --> K such that G = f o. F , and we say that G "passes to the quotient". (Contributed by Mario Carneiro, 24-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qtopeu.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| qtopeu.3 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) | ||
| qtopeu.4 | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| qtopeu.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) | ||
| Assertion | qtopeu | ⊢ ( 𝜑 → ∃! 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopeu.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | qtopeu.3 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –onto→ 𝑌 ) | |
| 3 | qtopeu.4 | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 4 | qtopeu.5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 5 | fofn | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 Fn 𝑋 ) | |
| 6 | 2 5 | syl | ⊢ ( 𝜑 → 𝐹 Fn 𝑋 ) |
| 7 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 8 | fniniseg | ⊢ ( 𝐹 Fn 𝑋 → ( 𝑦 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ ( 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ ( 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 10 | eqcom | ⊢ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 11 | 10 | 3anbi3i | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
| 12 | 3anass | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 13 | 11 12 | bitri | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 14 | 13 4 | sylan2br | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ) ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 15 | 14 | eqcomd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) ) ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 16 | 15 | expr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 17 | 9 16 | sylbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 18 | 17 | ralrimiv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 19 | cntop2 | ⊢ ( 𝐺 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 20 | 3 19 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 21 | toptopon2 | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) | |
| 22 | 20 21 | sylib | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 23 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ 𝐺 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐺 : 𝑋 ⟶ ∪ 𝐾 ) | |
| 24 | 1 22 3 23 | syl3anc | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ∪ 𝐾 ) |
| 25 | 24 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝑋 ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐺 Fn 𝑋 ) |
| 27 | cnvimass | ⊢ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ dom 𝐹 | |
| 28 | fof | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 29 | 2 28 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 30 | 29 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝑋 ) |
| 31 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → dom 𝐹 = 𝑋 ) |
| 32 | 27 31 | sseqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑋 ) |
| 33 | eqeq1 | ⊢ ( 𝑤 = ( 𝐺 ‘ 𝑦 ) → ( 𝑤 = ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑥 ) ) ) | |
| 34 | 33 | ralima | ⊢ ( ( 𝐺 Fn 𝑋 ∧ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ⊆ 𝑋 ) → ( ∀ 𝑤 ∈ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) 𝑤 = ( 𝐺 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 35 | 26 32 34 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑤 ∈ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) 𝑤 = ( 𝐺 ‘ 𝑥 ) ↔ ∀ 𝑦 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
| 36 | 18 35 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑤 ∈ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) 𝑤 = ( 𝐺 ‘ 𝑥 ) ) |
| 37 | 24 | fdmd | ⊢ ( 𝜑 → dom 𝐺 = 𝑋 ) |
| 38 | 37 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐺 ↔ 𝑥 ∈ 𝑋 ) ) |
| 39 | 38 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom 𝐺 ) |
| 40 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 41 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 42 | fniniseg | ⊢ ( 𝐹 Fn 𝑋 → ( 𝑥 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 43 | 7 42 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 44 | 40 41 43 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
| 45 | inelcm | ⊢ ( ( 𝑥 ∈ dom 𝐺 ∧ 𝑥 ∈ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) → ( dom 𝐺 ∩ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ≠ ∅ ) | |
| 46 | 39 44 45 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( dom 𝐺 ∩ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ≠ ∅ ) |
| 47 | imadisj | ⊢ ( ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) = ∅ ↔ ( dom 𝐺 ∩ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) = ∅ ) | |
| 48 | 47 | necon3bii | ⊢ ( ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ≠ ∅ ↔ ( dom 𝐺 ∩ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ≠ ∅ ) |
| 49 | 46 48 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ≠ ∅ ) |
| 50 | eqsn | ⊢ ( ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ≠ ∅ → ( ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) = { ( 𝐺 ‘ 𝑥 ) } ↔ ∀ 𝑤 ∈ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) 𝑤 = ( 𝐺 ‘ 𝑥 ) ) ) | |
| 51 | 49 50 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) = { ( 𝐺 ‘ 𝑥 ) } ↔ ∀ 𝑤 ∈ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) 𝑤 = ( 𝐺 ‘ 𝑥 ) ) ) |
| 52 | 36 51 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) = { ( 𝐺 ‘ 𝑥 ) } ) |
| 53 | 52 | unieqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) = ∪ { ( 𝐺 ‘ 𝑥 ) } ) |
| 54 | fvex | ⊢ ( 𝐺 ‘ 𝑥 ) ∈ V | |
| 55 | 54 | unisn | ⊢ ∪ { ( 𝐺 ‘ 𝑥 ) } = ( 𝐺 ‘ 𝑥 ) |
| 56 | 53 55 | eqtr2di | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) = ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
| 57 | 56 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) ) |
| 58 | 24 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 59 | 29 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑌 ) |
| 60 | 29 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 61 | eqidd | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) = ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ) | |
| 62 | sneq | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑥 ) → { 𝑤 } = { ( 𝐹 ‘ 𝑥 ) } ) | |
| 63 | 62 | imaeq2d | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑥 ) → ( ◡ 𝐹 “ { 𝑤 } ) = ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) |
| 64 | 63 | imaeq2d | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑥 ) → ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) = ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
| 65 | 64 | unieqd | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑥 ) → ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) = ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) |
| 66 | 59 60 61 65 | fmptco | ⊢ ( 𝜑 → ( ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∘ 𝐹 ) = ( 𝑥 ∈ 𝑋 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ) ) |
| 67 | 57 58 66 | 3eqtr4d | ⊢ ( 𝜑 → 𝐺 = ( ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∘ 𝐹 ) ) |
| 68 | 67 3 | eqeltrrd | ⊢ ( 𝜑 → ( ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∘ 𝐹 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 69 | 24 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐺 ‘ 𝑥 ) ∈ ∪ 𝐾 ) |
| 70 | 56 69 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ∈ ∪ 𝐾 ) |
| 71 | 70 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ∈ ∪ 𝐾 ) |
| 72 | 65 | eqcomd | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑥 ) → ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) = ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) |
| 73 | 72 | eqcoms | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑤 → ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) = ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) |
| 74 | 73 | eleq1d | ⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑤 → ( ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ∈ ∪ 𝐾 ↔ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ∈ ∪ 𝐾 ) ) |
| 75 | 74 | cbvfo | ⊢ ( 𝐹 : 𝑋 –onto→ 𝑌 → ( ∀ 𝑥 ∈ 𝑋 ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ∈ ∪ 𝐾 ↔ ∀ 𝑤 ∈ 𝑌 ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ∈ ∪ 𝐾 ) ) |
| 76 | 2 75 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ∪ ( 𝐺 “ ( ◡ 𝐹 “ { ( 𝐹 ‘ 𝑥 ) } ) ) ∈ ∪ 𝐾 ↔ ∀ 𝑤 ∈ 𝑌 ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ∈ ∪ 𝐾 ) ) |
| 77 | 71 76 | mpbid | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑌 ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ∈ ∪ 𝐾 ) |
| 78 | eqid | ⊢ ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) = ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) | |
| 79 | 78 | fmpt | ⊢ ( ∀ 𝑤 ∈ 𝑌 ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ∈ ∪ 𝐾 ↔ ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) : 𝑌 ⟶ ∪ 𝐾 ) |
| 80 | 77 79 | sylib | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) : 𝑌 ⟶ ∪ 𝐾 ) |
| 81 | qtopcn | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) ∧ ( 𝐹 : 𝑋 –onto→ 𝑌 ∧ ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) : 𝑌 ⟶ ∪ 𝐾 ) ) → ( ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ↔ ( ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∘ 𝐹 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) | |
| 82 | 1 22 2 80 81 | syl22anc | ⊢ ( 𝜑 → ( ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ↔ ( ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∘ 𝐹 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 83 | 68 82 | mpbird | ⊢ ( 𝜑 → ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) |
| 84 | coeq1 | ⊢ ( 𝑓 = ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) → ( 𝑓 ∘ 𝐹 ) = ( ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∘ 𝐹 ) ) | |
| 85 | 84 | rspceeqv | ⊢ ( ( ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝐺 = ( ( 𝑤 ∈ 𝑌 ↦ ∪ ( 𝐺 “ ( ◡ 𝐹 “ { 𝑤 } ) ) ) ∘ 𝐹 ) ) → ∃ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ) |
| 86 | 83 67 85 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ) |
| 87 | eqtr2 | ⊢ ( ( 𝐺 = ( 𝑓 ∘ 𝐹 ) ∧ 𝐺 = ( 𝑔 ∘ 𝐹 ) ) → ( 𝑓 ∘ 𝐹 ) = ( 𝑔 ∘ 𝐹 ) ) | |
| 88 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → 𝐹 : 𝑋 –onto→ 𝑌 ) |
| 89 | qtoptopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋 –onto→ 𝑌 ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) | |
| 90 | 1 2 89 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 91 | 90 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ) |
| 92 | 22 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 93 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) | |
| 94 | cnf2 | ⊢ ( ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) → 𝑓 : 𝑌 ⟶ ∪ 𝐾 ) | |
| 95 | 91 92 93 94 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → 𝑓 : 𝑌 ⟶ ∪ 𝐾 ) |
| 96 | 95 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → 𝑓 Fn 𝑌 ) |
| 97 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) | |
| 98 | cnf2 | ⊢ ( ( ( 𝐽 qTop 𝐹 ) ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) → 𝑔 : 𝑌 ⟶ ∪ 𝐾 ) | |
| 99 | 91 92 97 98 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → 𝑔 : 𝑌 ⟶ ∪ 𝐾 ) |
| 100 | 99 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → 𝑔 Fn 𝑌 ) |
| 101 | cocan2 | ⊢ ( ( 𝐹 : 𝑋 –onto→ 𝑌 ∧ 𝑓 Fn 𝑌 ∧ 𝑔 Fn 𝑌 ) → ( ( 𝑓 ∘ 𝐹 ) = ( 𝑔 ∘ 𝐹 ) ↔ 𝑓 = 𝑔 ) ) | |
| 102 | 88 96 100 101 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → ( ( 𝑓 ∘ 𝐹 ) = ( 𝑔 ∘ 𝐹 ) ↔ 𝑓 = 𝑔 ) ) |
| 103 | 87 102 | imbitrid | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∧ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ) ) → ( ( 𝐺 = ( 𝑓 ∘ 𝐹 ) ∧ 𝐺 = ( 𝑔 ∘ 𝐹 ) ) → 𝑓 = 𝑔 ) ) |
| 104 | 103 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∀ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ( ( 𝐺 = ( 𝑓 ∘ 𝐹 ) ∧ 𝐺 = ( 𝑔 ∘ 𝐹 ) ) → 𝑓 = 𝑔 ) ) |
| 105 | coeq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 ∘ 𝐹 ) = ( 𝑔 ∘ 𝐹 ) ) | |
| 106 | 105 | eqeq2d | ⊢ ( 𝑓 = 𝑔 → ( 𝐺 = ( 𝑓 ∘ 𝐹 ) ↔ 𝐺 = ( 𝑔 ∘ 𝐹 ) ) ) |
| 107 | 106 | reu4 | ⊢ ( ∃! 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ↔ ( ∃ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ∧ ∀ 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ∀ 𝑔 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) ( ( 𝐺 = ( 𝑓 ∘ 𝐹 ) ∧ 𝐺 = ( 𝑔 ∘ 𝐹 ) ) → 𝑓 = 𝑔 ) ) ) |
| 108 | 86 104 107 | sylanbrc | ⊢ ( 𝜑 → ∃! 𝑓 ∈ ( ( 𝐽 qTop 𝐹 ) Cn 𝐾 ) 𝐺 = ( 𝑓 ∘ 𝐹 ) ) |