This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topological space is T_0 iff the quotient map is a homeomorphism onto the space's Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | t0kq.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| Assertion | t0kq | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Kol2 ↔ 𝐹 ∈ ( 𝐽 Homeo ( KQ ‘ 𝐽 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t0kq.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 2 | simpl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Kol2 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 3 | 1 | ist0-4 | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Kol2 ↔ 𝐹 : 𝑋 –1-1→ V ) ) |
| 4 | 3 | biimpa | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Kol2 ) → 𝐹 : 𝑋 –1-1→ V ) |
| 5 | 2 4 | qtopf1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Kol2 ) → 𝐹 ∈ ( 𝐽 Homeo ( 𝐽 qTop 𝐹 ) ) ) |
| 6 | 1 | kqval | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop 𝐹 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Kol2 ) → ( KQ ‘ 𝐽 ) = ( 𝐽 qTop 𝐹 ) ) |
| 8 | 7 | oveq2d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Kol2 ) → ( 𝐽 Homeo ( KQ ‘ 𝐽 ) ) = ( 𝐽 Homeo ( 𝐽 qTop 𝐹 ) ) ) |
| 9 | 5 8 | eleqtrrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Kol2 ) → 𝐹 ∈ ( 𝐽 Homeo ( KQ ‘ 𝐽 ) ) ) |
| 10 | hmphi | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo ( KQ ‘ 𝐽 ) ) → 𝐽 ≃ ( KQ ‘ 𝐽 ) ) | |
| 11 | hmphsym | ⊢ ( 𝐽 ≃ ( KQ ‘ 𝐽 ) → ( KQ ‘ 𝐽 ) ≃ 𝐽 ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo ( KQ ‘ 𝐽 ) ) → ( KQ ‘ 𝐽 ) ≃ 𝐽 ) |
| 13 | 1 | kqt0lem | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ Kol2 ) |
| 14 | t0hmph | ⊢ ( ( KQ ‘ 𝐽 ) ≃ 𝐽 → ( ( KQ ‘ 𝐽 ) ∈ Kol2 → 𝐽 ∈ Kol2 ) ) | |
| 15 | 12 13 14 | syl2im | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo ( KQ ‘ 𝐽 ) ) → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Kol2 ) ) |
| 16 | 15 | impcom | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( 𝐽 Homeo ( KQ ‘ 𝐽 ) ) ) → 𝐽 ∈ Kol2 ) |
| 17 | 9 16 | impbida | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐽 ∈ Kol2 ↔ 𝐹 ∈ ( 𝐽 Homeo ( KQ ‘ 𝐽 ) ) ) ) |