This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homeomorphism is a 1-1-onto mapping. (Contributed by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmeof1o2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeocn | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 2 | cnf2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 3 | 1 2 | syl3an3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 4 | 3 | ffnd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ) → 𝐹 Fn 𝑋 ) |
| 5 | hmeocnvcn | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) | |
| 6 | cnf2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 7 | 6 | 3com12 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
| 8 | 5 7 | syl3an3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ) → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
| 9 | 8 | ffnd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ) → ◡ 𝐹 Fn 𝑌 ) |
| 10 | dff1o4 | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ↔ ( 𝐹 Fn 𝑋 ∧ ◡ 𝐹 Fn 𝑌 ) ) | |
| 11 | 4 9 10 | sylanbrc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |