This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce equality from restricted uniqueness, deduction version. (Contributed by Thierry Arnoux, 27-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reu2eqd.1 | ⊢ ( 𝑥 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| reu2eqd.2 | ⊢ ( 𝑥 = 𝐶 → ( 𝜓 ↔ 𝜃 ) ) | ||
| reu2eqd.3 | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐴 𝜓 ) | ||
| reu2eqd.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | ||
| reu2eqd.5 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | ||
| reu2eqd.6 | ⊢ ( 𝜑 → 𝜒 ) | ||
| reu2eqd.7 | ⊢ ( 𝜑 → 𝜃 ) | ||
| Assertion | reu2eqd | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu2eqd.1 | ⊢ ( 𝑥 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | reu2eqd.2 | ⊢ ( 𝑥 = 𝐶 → ( 𝜓 ↔ 𝜃 ) ) | |
| 3 | reu2eqd.3 | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝐴 𝜓 ) | |
| 4 | reu2eqd.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) | |
| 5 | reu2eqd.5 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | |
| 6 | reu2eqd.6 | ⊢ ( 𝜑 → 𝜒 ) | |
| 7 | reu2eqd.7 | ⊢ ( 𝜑 → 𝜃 ) | |
| 8 | reu2 | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ( ∃ 𝑥 ∈ 𝐴 𝜓 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → 𝑥 = 𝑦 ) ) ) | |
| 9 | 3 8 | sylib | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → 𝑥 = 𝑦 ) ) ) |
| 10 | 9 | simprd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → 𝑥 = 𝑦 ) ) |
| 11 | nfv | ⊢ Ⅎ 𝑥 𝜒 | |
| 12 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜓 | |
| 13 | 11 12 | nfan | ⊢ Ⅎ 𝑥 ( 𝜒 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) |
| 14 | nfv | ⊢ Ⅎ 𝑥 𝐵 = 𝑦 | |
| 15 | 13 14 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝜒 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → 𝐵 = 𝑦 ) |
| 16 | nfv | ⊢ Ⅎ 𝑦 ( ( 𝜒 ∧ 𝜃 ) → 𝐵 = 𝐶 ) | |
| 17 | 1 | anbi1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( 𝜒 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
| 18 | eqeq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 = 𝑦 ↔ 𝐵 = 𝑦 ) ) | |
| 19 | 17 18 | imbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝜒 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → 𝐵 = 𝑦 ) ) ) |
| 20 | nfv | ⊢ Ⅎ 𝑥 𝜃 | |
| 21 | 20 2 | sbhypf | ⊢ ( 𝑦 = 𝐶 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ 𝜃 ) ) |
| 22 | 21 | anbi2d | ⊢ ( 𝑦 = 𝐶 → ( ( 𝜒 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( 𝜒 ∧ 𝜃 ) ) ) |
| 23 | eqeq2 | ⊢ ( 𝑦 = 𝐶 → ( 𝐵 = 𝑦 ↔ 𝐵 = 𝐶 ) ) | |
| 24 | 22 23 | imbi12d | ⊢ ( 𝑦 = 𝐶 → ( ( ( 𝜒 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → 𝐵 = 𝑦 ) ↔ ( ( 𝜒 ∧ 𝜃 ) → 𝐵 = 𝐶 ) ) ) |
| 25 | 15 16 19 24 | rspc2 | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → 𝑥 = 𝑦 ) → ( ( 𝜒 ∧ 𝜃 ) → 𝐵 = 𝐶 ) ) ) |
| 26 | 4 5 25 | syl2anc | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝜓 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → 𝑥 = 𝑦 ) → ( ( 𝜒 ∧ 𝜃 ) → 𝐵 = 𝐶 ) ) ) |
| 27 | 10 26 | mpd | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜃 ) → 𝐵 = 𝐶 ) ) |
| 28 | 6 7 27 | mp2and | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) |